文件名称:
《机器学习模型思考》系列:线性回归模型的基本假设
开发工具:
文件大小: 48kb
下载次数: 0
上传时间: 2021-01-06
详细说明:/关注 长歌大腿 公众号,发送“机器学习”关键字,可获取包含机器学习(包含深度学习),统计概率,优化算法等系列文本与视频经典资料,如《ESL》《PRML》《MLAPP》等。/
文章来源《机器学习模型思考》系列:线性回归模型的基本假设 .
线性模型是众多模型的基准,是更大范围的广义线性模型如支持向量机SVM,逻辑回归等模型的基模型,是经常使用的非常重要的数学方法。但是大多数机器学习或者数学建模的书籍中都没有讲述该模型的适用条件,任何模型在应用时都有其适用范围,作为最广泛的线性模型也不例外。以下为线性模型使用的关于数据方面的假设条件:
经典假设:
解释变量 X 是确定性变量,不是随机变量,而且在重
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.