您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Pytorch深度学习(4) — BN层及ResNet + DenseNet实现
  所属分类: 其它
  开发工具:
  文件大小: 255kb
  下载次数: 0
  上传时间: 2021-01-06
  提 供 者: weixin_********
 详细说明:Pytorch深度学习(4) — BN层及ResNet + DenseNet实现1.批量归一化(BN)2.ResNet2.1 残差块2.2 ResNet 模型实现结构:3.DenseNet 稠密连接网络3.1 稠密块(DenseBlock)3.3 过滤层(transition_block)3.4 DenseNet模型总实现 1.批量归一化(BN) nn.BatchNorm2d(6) — 卷积层使用,超参数为输出通道数 nn.BatchNorm1d(120) – 全连接层使用,超参数为输出单元个数 2.ResNet 2.1 残差块 输入为X + Y,因而X Y的输出通道要一致 可以用1*1
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: