开发工具:
文件大小: 241kb
下载次数: 0
上传时间: 2021-01-06
详细说明:强化学习与监督学习的区别:
(1)训练数据中没有标签,只有奖励函数(Reward Function)。
(2)训练数据不是现成给定,而是由行为(Action)获得。
(3)现在的行为(Action)不仅影响后续训练数据的获得,也影响奖励函数(Reward Function)的取值。
(4)训练的目的是构建一个“状态->行为”的函数,其中状态(State)描述了目前内部和外部的环境,在此情况下,要使一个智能体(Agent)在某个特定的状态下,通过这个函数,决定此时应该采取的行为。希望采取这些行为后,最终获得最大的奖励函数值。
定义:
假设状态数有限,行为数有限。
RtR_{t}Rt:t时刻的奖
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.