文件名称:
LeNet-pytorch-FashionMNIST分类识别
开发工具:
文件大小: 129kb
下载次数: 0
上传时间: 2021-01-06
详细说明:LeNetLeNet模型构造读入数据和数据预览定义device定义网络计算准确率训练测试局限
LeNet
1、使用全连接层的局限性:
图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。对于大尺寸的输入图像,使用全连接层容易导致模型过大。
2、使用卷积层的优势:
卷积层保留输入形状。卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。
LeNet分为卷积层块和全连接层块两个部分
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
卷积层块由两个这
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.