您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 分类问题损失函数 – 交叉熵
  所属分类: 其它
  开发工具:
  文件大小: 122kb
  下载次数: 0
  上传时间: 2021-01-06
  提 供 者: weixin_********
 详细说明:参考链接:https://zhuanlan.zhihu.com/p/61944055 信息熵: 表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望。熵越大,随机变量或系统的不确定性就越大。公式如下: 相对熵: 又称KL散度,用于衡量对于同一个随机变量x的两个分布p(x)和q(x)之间的差异。在机器学习中,p(x)从常用于描述样本的真实分布,而q(x)常用于表示预测的分布。KL散度值越小表示两个分布越接近。 公式如下: 交叉熵(cross entropy): 将KL散度公式进行变形得到: 前半部分就是p(x)的熵,后半部分就是交叉熵: 机器学习中,我们常常使用KL散度来评估pr
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: