文件名称:
基于单边选择链和样本分布密度融合机制的非平衡数据挖掘方法
开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-03-17
详细说明:非平衡数据集分类问题是机器学习领域的重大挑战性难题.针对该难题,传统的少数类样本合成技术(Synthetic Minority Over-Sampling Technique,SMOTE)已成为一种有力手段并得到广泛采用.但在新样本生成过程中,SMOTE利用所有少数类样本合成新样本,由此产生过拟合瓶颈.为更好地解决该问题,提出了一种基于单边选择链和样本分布密度的非平衡数据挖掘新方法(One-Sided Link&Distribution Density-SMOTE,OSLDD-SMOTE).OSLDDSMOTE通过单边选择链遴选出处于分类边界的少数类样本,根据这些样本的动态分布密度生成新样本.进而分析了样本合成度对节点数目和对少数类精度的影响;基于G-mean、F-measure和AUC三个指标综合比较了OSLDD-SMOTE与其他同类方法的分类性能.实验结果表明,OSLDD-SMOTE有效提高了少数类样本的分类准确率.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.