开发工具:
文件大小: 398kb
下载次数: 0
上传时间: 2021-03-17
详细说明:粗糙集理论是处理不确定性信息的有效工具,并已成功应用于许多领域。 增量学习作为动态环境中数据分析的一种有效策略,可以通过使用先验知识从新信息中获取更多知识,并吸引了许多学者的广泛关注。 在本文中,作者讨论了在粗糙集上进行增量学习的研究现状,并提出了潜在的未来研究方向。 作者首先回顾了粗糙集的基本概念,并列出了动态决策程序中信息系统的三种变体。 然后,作者分别研究和总结了三种不同学习观点的变体的相应增量学习策略。 最后,作者进一步梳理了我们工作的研究框架,并确定了一些未来可能的研究方向。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.