开发工具:
文件大小: 12kb
下载次数: 0
上传时间: 2021-03-17
详细说明:cs4641-python
该存储库包含针对各种机器学习技术的Python实现,我在乔治亚理工学院CS 4641(机器学习)课程的一部分中从头开始对它们进行了编码。 阅读以下有关每个模型的更多信息:
K均值聚类
K均值初始化k个随机聚类中心,并将每个数据点归类为最接近的k个聚类中的任何一个。 在此实现中,我使用成对的欧几里德距离进行聚类,并使用平方误差总和来计算损失。
高斯混合模型
GMM是一种概率模型,它假定可以从有限数量的高斯分布的组合中产生所有数据点。 它是一种软群集算法,可将每个数据点分组到一个群集中,并为其分配出现在该群集中的概率。 该实现使用期望最大化来拟合模型,并使用最大似然估计来优化参数。
主成分分析
朴素贝叶斯分类器
神经网络
回归
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.