开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-03-16
详细说明:如何提高左右手运动想象脑电信号的分类率是脑机接口研究领域的一个热点话题。基于美国EGI64导脑电采集系统得到3名健康被试的脑电数据,首先,采用独立成分分析(Independent Component Analysis,ICA)对采集的数据进行去噪处理;然后,利用离散小波变换方法对分解C3/C4处的EEG平均功率信号,选用尺度6上逼近系数A6的重构信号作为脑电特征信号;最后,用Fisher线性判别分析法(Fisher Linear Discriminant Analysis,FLDA)、支持向量机方法 (Support Vector Machines,SVM)和极限学习机分类方法 (Extreme Learning Machine,ELM)分别对特征信号进行分类。分类结果表明:极限学习机分类方法得出的平均分类率要高于Fisher方法与SVM方法的平均分类率,可以达到92%,而且运行速度也高于另两种分类算法。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.