您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 动手学深度学习之卷积神经网络进阶(ModernCNN)

  2. 参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/lesson/T5r2YnM8A4vZpxPUbCQSyW 感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!! 总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹的其他课程:
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:403456
    • 提供者:weixin_38530202
  1. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记

  2. 伯禹公益AI《动手学深度学习PyTorch版》Task 05 学习笔记 Task 05:卷积神经网络基础;LeNet;卷积神经网络进阶 微信昵称:WarmIce 昨天打了一天的《大革命》,真挺好玩的。不过讲道理,里面有的剧情有点为了“动作”而“动作”,颇没意思。但是Ubi的故事还是讲得一如既往得好。 言归正传,这3节课,前两节没什么意思,充其量复习了计算卷积层输出的特征图大小的公式: $ \mathbf{floor}((in_size + padding – kernel_size)/stri
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:49152
    • 提供者:weixin_38720653
  1. 《动手学——卷积神经网络基础》笔记

  2. 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:138240
    • 提供者:weixin_38530211
  1. 动手学深度学习之-卷积神经网络基础

  2. 卷积神经网络基础 参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/video/whY-8BhPmsle8wyEEyTST 感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!! 总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:132096
    • 提供者:weixin_38740596
  1. 《动手学深度学习》——笔记2

  2. 第二次打卡内容 Task1 过拟合欠拟合,梯度消失,爆炸,LSTM,GRU Tsak2 机器翻译,Seq2Seq, Transformer Task3 卷积神经网络基础和进阶,leNet 过拟合与欠拟合 过拟合:泛化误差高于训练误差,原因是模型过于复杂或者训练数据集比较小。当模型过于复杂时,可以简化模型参数或者加入L2正则化对参数进行惩罚,也可以采用丢弃法泛化误差不会随着训练数据集里的样本数量增加儿增大,所以通常选择大一些的训练数据集。 欠拟合:无法得到较低的训练误差。原因是训练数据集不够或者模
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:364544
    • 提供者:weixin_38537689