交通标志识别(TSR)系统是智能交通系统的重要研究方向。道路交通环境复杂、交通标志数据库规模庞大等因素导致在设计TSR系统可行性方案时必须考虑计算复杂度和识别率。提出了一种高效且快速的基于改进主成分分析(PCA)法和极限学习机(ELM)的TSR算法, 被称为PCA-HOG。该算法首先提取交通标志数据库中每个交通标志的梯度方向直方图(HOG)特征, 利用改进PCA算法对提取出的HOG特征进行降维处理, 之后利用降维后的HOG特征进行ELM模型训练, 利用经过训练的ELM模型识别测试图片。实验结果表