聚集查询是一种常用但是耗时的数据库操作.相对于准确查询,以少得多的响应时间向用户返回满足置信区间的近似结果通常是一种更好的选择.现有的近似查询方法无法在海量数据上高效地处理满足任意精度的近似聚集查询.提出一种新的算法PAA(partition-based approximate aggregation)来有效处理满足任意置信区间的近似聚集.维属性的数据空间被划分为同样大小的空间区域,每个分片维护着维属性落入对应空间区域的元组.PAA算法维护表的随机样本RS,其执行包括两个阶段.在阶段1,如果利用