决策树( Decision Tree )又称为判定树,是运用于分类的一种树结构。其中的每个内部结点( internal node )代表对某个属性的一次测试,每条边代表一个测试结果,叶结点( leaf )代表某个类( class )或者类的分布( class distribution ),最上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训
决策树( Decision Tree )又称为判定树,是运用于分类的一种树结构。其中的每个内部结点( internal node )代表对某个属性的测试,每条边代表一个测试结果,叶结点( leaf )代表某个类( class )或者类的分布( class distribution ),上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据