为了提高城区机载激光雷达点云数据地物分类的分类精度,提出了一种基于Point-Net网络的多源融合点云地物分类方法。点云在地物三维特征表示上具有优势,而遥感影像包含丰富的光谱信息,因此设计了一种点云与遥感影像的配准融合方法,综合利用两种数据的优势。针对Point-Net网络存在缺少邻域信息的问题,提出一种针对融合点云数据的多尺度Point-Net分类模型,实现对融合点云数据的有效分类。利用城区点云数据验证本文算法,通过分析分类精度和分类时间对分类效果进行评价。结果证明:相比其他算法,本文算法有效