点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 切Feynman积分的图解Hopf代数:一圈情况
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
切Feynman积分的图解Hopf代数:一圈情况
我们构造作用于一环Feynman图及其割的图解协作。 这些图自然会通过尺寸正则化中的相应(切)费曼积分来标识,该维恩积分在尺寸调节器中的洛朗膨胀系数是多个对数(MPL)。 我们的主要结果是这样的猜想,即在劳伦扩展中,这种图解式的协作按顺序再现了MPL上的协作的组合。 我们证明了我们的猜想存在于广泛的非平凡的一环积分中。 然后,我们探索其对研究Feynman积分的不连续性及其满足的微分方程的影响。 特别是,使用图解协作以及切割信息,我们可以明确推导任何一环费曼积分的微分方程。 我们还将解释如何递归
所属分类:
其它
发布日期:2020-04-02
文件大小:1048576
提供者:
weixin_38553648