您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 动手学深度学习(五):卷积神经网络

  2. 卷积神经网络基础 卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本文中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本文中,我们将介绍简单形式的二维卷积层的工作原理。 1、二维互相关运算 虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:101376
    • 提供者:weixin_38653085
  1. 动手学深度学习-学习笔记(五)

  2. 本文的主要内容有::卷积神经网络基础;leNet;卷积神经网络进阶 一、卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:251904
    • 提供者:weixin_38706951