您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《MATLAB R2016a在电子信息工程中的仿真案例分析》源码

  2. 目录 第1章最优的FIR滤波器设计 1.1频率取样的FIR滤波器设计 1.1.1约束条件 1.1.2设计误差 1.2最优的FIR滤波器设计 1.2.1一般最优滤波器 1.2.2加权最优滤波器 1.2.3反对称FIR滤波器 1.2.4微分FIR滤波器 1.3IIR与FIR数字滤波器的比较 第2章基于神经网络的案例分析与实现 2.1农作物虫情预测 2.1.1基于神经网络的虫情预测原理 2.1.2BP网络设计 2.2模型参考控制 2.2.1模型参考控制概念 2.2.2模型参考控制实例分析 2.3神经
  3. 所属分类:其它

    • 发布日期:2018-06-04
    • 文件大小:87040
    • 提供者:williamanos
  1. 基于卷积神经网络的车牌照字符识别研究

  2. 基于卷积神经网络的车牌照字符识别研究310 第十二届全国图象图形学学术会议 以充分利用人的经验来获取模式特征以及神经网 来正确识别所有样本;Uc4层是网络的输出层即识 终分类能力来识别字符,特征提取必须能反应整 个字符的特征,才能达到较高的识别率;后者则 别层,显示网络最终的模式识别结果。 省去特征抽取,将整个字符直接作为神经网络的 差异提取层Uc的输出姐式(1)所示 输入。这种方式虽然在一定程度上增加了神经网 络结构的复杂度,但是网络的抗干扰性能和识别 n(n,)=max{(-)∑a()l(n
  3. 所属分类:机器学习

    • 发布日期:2019-04-19
    • 文件大小:274432
    • 提供者:suiyu_eran
  1. 卷积神经网络及其在图像处理中的应用

  2. 卷积神经网络(ConstitutionalNeuralNetworks,CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:多层神经网络包括一个输入层和一个输出层,中间有多个隐藏层。每一层有若干个神经元,相邻的两层之间的后一层的每一个神经元都分别与前一层的每一个神经元连接。在一般的识别问题中,输入层代表特征向量,输入层的每一个神经元代表一个特征值。在图像识别问题中,输入层的每一个神经元可能代表一个像素的灰度值。但这种神经网络用于图像识
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:467968
    • 提供者:weixin_38527987
  1. 卷积神经网络及其在图像处理中的应用

  2. 卷积神经网络(ConstitutionalNeuralNetworks,CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络: 多层神经网络包括一个输入层和一个输出层,中间有多个隐藏层。每一层有若干个神经元,相邻的两层之间的后一层的每一个神经元都分别与前一层的每一个神经元连接。在一般的识别问题中,输入层代表特征向量,输入层的每一个神经元代表一个特征值。在图像识别问题中,输入层的每一个神经元可能代表一个像素的灰度值
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:467968
    • 提供者:weixin_38731226