基于哈希的近邻查找技术在图像检索、文本匹配、数据挖掘等信息检索领域均有广泛应用.该技术将原始数据通过哈希函数压缩成低维的二进制编码,然后在海明距离下排序检索,具有快速高效且维度不敏感的优势.但是,目前学术界针对流数据的实时在线哈希学习方法的研究很少,而且基本没有讨论哈希函数的更新频率和稳定性问题.针对这一问题,通过增加置信区间来减少更换哈希函数的频率,并构造在线学习的目标函数,使得算法尽可能保持稳定,且快速收敛.为了验证所提出算法的效率和有效性,在公开数据集上与同类的OSH、OKH在线哈希算法进