您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于卷积神经网络的人群密度

  2. 基于卷积神经网络的人群密度
  3. 所属分类:群集服务

    • 发布日期:2016-03-19
    • 文件大小:3145728
    • 提供者:daihuadong
  1. 改进的基于卷积神经网络的人数估计方法

  2. 估算监控场景中的人数是安防监控的重要任务之一, 当人群密集、行人之间存在遮挡时, 人数估计较困难。因此, 针对密集场景下的人数估计问题, 提出了一种改进的基于卷积神经网络的人数估计方法。为了改善摄像透视畸变带来的影响, 分别利用深层网络和浅层网络提取人群特征, 深层和浅层网络分别设计了不同核大小的卷积层, 并将提取到的特征通过一个具备多尺度提取能力的结构进行融合。实验结果表明, 改进后的网络模型所获取的人群密度图更加贴近原场景信息, 人数估计结果也更加精确。
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:6291456
    • 提供者:weixin_38577200
  1. 很棒的人群本地化:很棒的人群本地化-源码

  2. 很棒的人群本地化 很棒的人群本地化 内容 杂项 相对任务 人群分析 密集/小型/微小物体检测 挑战 NWPU人群本地化: 第一次微小物体检测挑战: 指标 RAZNet中的mAP, (即COCO中的关键点评估:固定的sigma) F1-m,精度,召回率(比例感知sigma) MLE(距离度量) 数据集 NWPU人群(点,框) JHU-CROWD(点,大小) FDST(点,框) 文件 Arxiv 利用卷积神经网络对高密度物体进行计数和定位[] [IIM]学习独立实例图以进行人群本地化[]
  3. 所属分类:其它

    • 发布日期:2021-02-18
    • 文件大小:3072
    • 提供者:weixin_42099633
  1. 基于深度时空特征卷积—池化的视频人群计数方法

  2. 由于摄像机角度、背景、人群密度分布和遮挡的限制,传统的基于底层视觉特征的视频人群计数方法往往难以实现理想的效果。利用视频的时空特征和卷积—池化方法形成高层的视觉特征,采用局部特征聚合描述符进行量化和码本计算,实现了对视频人群信息的精准描述;该方法充分利用了视频的运动和外观信息,基于卷积神经网络和池化方法提升了对视频本征属性和特征的描述能力。实验结果表明,所提方法比传统的视频人群计数方法具有更高的精度和更好的顽健性。
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:1048576
    • 提供者:weixin_38684328
  1. 基于卷积神经网络的密集场景人流估计方案

  2. 人流密度估计作为一种有效的人群监测、控制和行为理解方法,得到了广泛的应用和研究。但传统估计方法使用的手工特征提取图像特征单一、准确度较低,容易造成密集场景人流估计不准确。为此,文中提出了一种基于深度的卷积神经网络(CNN)人群密度估计方法,利用典型的深层网络Googlenet 和VGGnet进行了方法改进。通过采用一个包括18个拥挤景区密集场景、超过160 K密度的注释图像数据集进行的实验测试结果表明,该方法的平均准确率为92.46%,与GLCM-SVM方法进行对比的结果也充分证明了该方法的优越
  3. 所属分类:其它

    • 发布日期:2021-01-12
    • 文件大小:1048576
    • 提供者:weixin_38747906