您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于原子分解的次梯度下降用于矩阵分类

  2. 矩阵适用于表示具有复杂结构的大量数据,例如图像和脑电图数据(EEG)。 为了学习处理这些矩阵数据的分类器,特征矩阵的结构信息是有用的。 本文着重于正则化的矩阵分类器,其输入样本和权重参数均为矩阵形式。 现有的一些方法假设权重矩阵具有低秩结构,然后利用权重矩阵的流行核规范作为正则化项。 但是,这些矩阵分类器的优化方法通常涉及大量昂贵的奇异值分解(SVD)操作,从而无法扩展到适中的矩阵大小。 为了降低时间复杂度,我们提出了一种新颖的学习算法,称为基于原子分解的次梯度下降法(ADBSD),它解决了以目
  3. 所属分类:其它

    • 发布日期:2021-03-05
    • 文件大小:573440
    • 提供者:weixin_38678172