您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多尺度Hermitian小波包络谱的轴承故障诊断.pdf

  2. 基于Hermitian的小波包络谱的滚动轴承故障的识别诊断及分析中国机械工程第23卷第1期2012年1月上半月 2.1轴承内圈的故障诊断 4000 图2所示为轴承内圈存在局部故障的时域振 3000 邇2000 动信号。图3所示为采用传统方法计算得到的振 1000 动信号的包络谱,由于受背景噪声的影响和带通 滤波、带宽选择的限制,滚动轴承的内圈故障特征 频率f在图3中没用得到明显体现 10时 2004006008001000 频率f/Hz 图5轴承内圈故障的多尺度包络谱 20 4000 -10 3
  3. 所属分类:C

    • 发布日期:2019-07-27
    • 文件大小:2097152
    • 提供者:kkkwuwu
  1. 基于小波包分解和EMD的滚动轴承故障诊断方法研究

  2. 提出了一种基于小波包分解与EMD的故障诊断特征提取方法。对故障振动信号进行小波包分解,并将其高频部分节点信号进行重构,对2个节点的重构信号分别进行EMD分解,得到一系列的IMF分量;提取每个节点的各个IMF分量的能量值并归一化后作为轴承的故障特征量输入神经网络进行诊断。通过实验证明2种方法的结合具有良好的局部分析能力及自适应分解的特点,可以提取更加有效的特征值,因此在进行诊断时,具有更快的速度与更高的准确率。
  3. 所属分类:其它

    • 发布日期:2020-05-27
    • 文件大小:264192
    • 提供者:weixin_38680475
  1. 基于包络谱分析的滚动轴承故障诊断方法研究

  2. 分别用小波分解、小波包分解和EMD分解处理滚动轴承故障数据,并结合Hilbert变换进行包络谱分析实现滚动轴承故障诊断。对滚动轴承故障数据进行小波阈值降噪。小波阈值降噪后分别进行小波分解、小波包分解和EMD分解。分别求出小波分解、小波包分解和EMD分解后各个频带的能量谱。再根据能量谱确定故障频带范围并对其进行信号重构。采用Hilbert变换对重构信号进行包络谱分析实现滚动轴承故障诊断。通过对滚动轴承内圈故障信号的分析验证了小波分解、小波包分解和EMD分解结合Hilbert变换进行包络谱分析的滚动
  3. 所属分类:其它

    • 发布日期:2020-07-04
    • 文件大小:458752
    • 提供者:weixin_38732519