您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于ODR和BSMOTE结合的不均衡数据SVM分类算法

  2. 针对传统的支持向量机(SVM)算法在数据不均衡的情况下分类效果不理想的缺陷,为了提高SVM算法在不均衡数据集下的分类性能,提出一种新型的逐级优化递减欠采样算法.该算法去除样本中大量重叠的冗余和噪声样本,使得在减少数据的同时保留更多的有用信息,并且与边界人工少数类过采样算法相结合实现训练样本数据集的均衡.实验表明,该算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能,而且总体分类性能也有所提高.
  3. 所属分类:其它

    • 发布日期:2021-02-20
    • 文件大小:523264
    • 提供者:weixin_38721691
  1. 基于ODR和BSMOTE 结合的不均衡数据SVM分类算法

  2. 针对传统的支持向量机(SVM) 算法在数据不均衡的情况下分类效果不理想的缺陷, 为了提高SVM算法在 不均衡数据集下的分类性能, 提出一种新型的逐级优化递减欠采样算法. 该算法去除样本中大量重叠的冗余和噪声 样本, 使得在减少数据的同时保留更多的有用信息, 并且与边界人工少数类过采样算法相结合实现训练样本数据集 的均衡. 实验表明, 该算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能, 而且总体分类性能也有所 提高.a
  3. 所属分类:其它

    • 发布日期:2021-01-14
    • 文件大小:246784
    • 提供者:weixin_38631599