视觉定位系统中,图像匹配的精度直接影响整个定位系统的精度,针对图像匹配中存在的误匹配率较高等问题,提出了一种基于多层次FAST(MFAST)和优化采样的随机采样一致性(RANSAC)算法的图像匹配算法。首先采用MFAST算法提取角点,运用加速稳健特征算法确定主方向生成特征描述符;然后在基于RANSAC的框架下,利用改进的加权K-最近邻分类方法选取新的样本集合计算出最佳模型参数,从而剔除误匹配点。在真实场景下进行实验,结果表明,与传统算法相比,该算法能高效剔除误匹配点,提高图像的匹配精度,且满足实