您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 感知机器分词

  2. 感知机器分词,分词的代码实现,采用感知机算法
  3. 所属分类:其它

    • 发布日期:2015-03-17
    • 文件大小:4194304
    • 提供者:lhlovetb
  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. 深度学习-从感知器到LSTM(目的是处理序列问题)

  2. 目的是将LSTM用在分词和词性标注任务,这一篇的目的是LSTM,但从感知器开始写起,希望能把这个流程中的主要知识点展示出来。由于水平有限,所以涉及大量公式的地方都会是从我看过的资料中截图过来,我会在文末放出文章的链接,供参考。感知器——基础的全连接网络——线性单元到线性模型——梯度下降——神经网络和反向传播算法——循环神经网络——LSTM——LSTM-CRF“感知器”一词出自于20世纪50年代中期到60年代中期人们对一种分类学习机模型的称呼,它是属于有关动物和机器学习的仿生学领域中的问题。当时的
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:2097152
    • 提供者:weixin_38500664
  1. 深度学习-从感知器到LSTM(目的是处理序列问题)

  2. 目的是将LSTM用在分词和词性标注任务,这一篇的目的是LSTM,但从感知器开始写起,希望能把这个流程中的主要知识点展示出来。由于水平有限,所以涉及大量公式的地方都会是从我看过的资料中截图过来,我会在文末放出文章的链接,供参考。感知器——基础的全连接网络——线性单元到线性模型——梯度下降——神经网络和反向传播算法——循环神经网络——LSTM——LSTM-CRF“感知器”一词出自于20世纪50年代中期到60年代中期人们对一种分类学习机模型的称呼,它是属于有关动物和机器学习的仿生学领域中的问题。当时的
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:2097152
    • 提供者:weixin_38625164