您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘--概念与技术

  2. 目录 第一章 引言 ......................................................................................................................................................... 8 1.1 什么激发数据挖掘?为什么它是重要的?.............................................................
  3. 所属分类:Web开发

    • 发布日期:2010-09-06
    • 文件大小:1048576
    • 提供者:huanghyw
  1. 四级数据库重难点(word版)

  2. 第1章 引言 1. 数据是描述现实世界事物的符号记录,是用物理符号记录下来的可以识别的信息。 数据是信息的符号表示,是载体;信息是数据的语义解释,是内涵。 2. 数据模型是对现实世界数据特征的抽象,是数据库系统的形式框架,用来描述数据的一组概念和定义,包括描述数据、数据联系、数据操作、数据语义以及数据一致性的概念工具。 满足三条件:比较真实地模拟现实世界;易于人们理解;易于计算机实现 三个组成要素:数据结构(静态,数据对象本身结构及之间的联系)、数据操作(对数据对象操作及操作规则的集合)和完整
  3. 所属分类:其它

    • 发布日期:2009-01-21
    • 文件大小:140288
    • 提供者:courage0603
  1. 数据仓库、OLAP和数据挖掘、统计分析的关系和区别分析

  2. 数据挖掘(DataMining),又称为数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。硬要去区分DataMining和Statistics的差异其实是没有太大意义的。一般将之定义为DataMining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,DataMining
  3. 所属分类:其它

    • 发布日期:2021-03-02
    • 文件大小:151552
    • 提供者:weixin_38607311
  1. 数据仓库、OLAP和数据挖掘、统计分析的关系和区别分析

  2. 数据挖掘(DataMining),又称为数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。硬要去区分DataMining和Statistics的差异其实是没有太大意义的。一般将之定义为DataMining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,DataMining
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:151552
    • 提供者:weixin_38517892