为解决挡车工表情因受光照不足、遮挡等问题而导致识别精度过低的问题,构建了一种基于迁移学习的卷积神经网络模型。该模型通过对纱线质量指标的分析,确定了挡车工表情的分类标准,建立了挡车工表情数据集,同时对数据集进行直方图均衡化、Rudin-Osher-Fatemi(ROF)去噪、人脸校正等预处理。在截取挡车工实时眼部数据的基础上,利用迁移学习方法对挡车工表情识别模型进行训练。最后,通过实验验证,结果表明构建的挡车工表情识别模型的识别精度高达98%,有效地解决了因受光照、遮挡等问题而导致挡车工表情无法识