您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 总结:Bootstrap(自助法),Bagging,Boosting(提升) - 简书.pdf

  2. 关于机器学习方面的集成算法,包括boosting和bagging,里面讲解详细,值得下载2019/4/27 总结: Bootstrap(白助法), Bagging, Boosting(提升)-简书 assiier 1 -9 Decition boundary Classifier 2 Decislon boundary 2 Classifier 3 o Decision boundary 3 ▲△▲ △6▲ Feature 1 Feature 1 Featur (∑ g Feature Ense
  3. 所属分类:机器学习

    • 发布日期:2019-10-13
    • 文件大小:2097152
    • 提供者:qq_15141977
  1. 机器学习中的算法:决策树模型组合之GBDT

  2. 本文来自于csdn,本文从informationgain和决策树两个方面介绍了机器学习的算法,希望对您的学习有帮助。决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的。模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:188416
    • 提供者:weixin_38582909
  1. 机器学习中的算法:决策树模型组合之GBDT

  2. 本文来自于csdn,本文从information gain和决策树两个方面介绍了机器学习的算法,希望对您的学习有帮助。决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的。模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:188416
    • 提供者:weixin_38628183