点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器学习入门—LDA与PCA算法(公式推导、纯python代码实现、scikit-learnapi调用对比结果)
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
机器学习入门 — LDA与PCA算法(公式推导、纯python代码实现、scikit-learn api调用对比结果)
为什么要做降维: 提高计算效率 留存有用的特征,为后续建模使用 在项目中实际拿到的数据,可能会有几百个维度(特征)的数据集,这样的数据集在建模使用时,非常消耗计算资源,所以需要通过使用降维方法来优化数据集 线性判别分析(Linear Discriminant Analysis) 用途:数据预处理中的降维,分类任务(有监督问题) 目标:LDA关心的是能够最大化类间区分度的坐标轴成分 将特征空间(数据集中的多维样本)投影到一个维度更小的 k 维子空间中,同时保持区分类别的信息 原理:投影到维度更低的
所属分类:
其它
发布日期:2020-12-21
文件大小:287744
提供者:
weixin_38654855