您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. 机器学习推导+python实现(一):线性回归

  2. 写在开头:这个系列的灵感已经整个系列的思路会根据公众号机器学习实验室的节奏进行,相当于做一个自己的理解版本,并且按照以往惯例我们会增加一些问题来对小细节进行讨论。 内容安排 笔者觉得如果单单的去调用sklearn库的机器学习的方法有些不妥,这个系列本应该在去年就开始了,但一直拖着没有更新。所以从今天开始我们一起来探究机器学习的乐趣吧。这个系列开始后,我们还会增加很多细节上的思考问题的讨论系列。 根据公众号机器学习实验室的节奏安排我们预计会涉及以下几个内容的实现:线性回归(一)、逻辑回归(二)、K
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:139264
    • 提供者:weixin_38744902
  1. 机器学习推导+python实现(二):逻辑回归

  2. 写在开头:今天开始逻辑回归的内容分享,仍然是参考学习公众号机器学习实验室的思路和内容,尽量在实现的环节多加一些自己的思考,吸收一下。 内容安排 线性回归(一)、逻辑回归(二)、K近邻(三)、决策树值ID3(四)、CART(五)、感知机(六)、神经网络(七)、线性可分支持向量机(八)、线性支持向量机(九)、线性不可分支持向量机(十)、朴素贝叶斯(十一)、Lasso回归(十二)、Ridge岭回归(十三)等。 今天就是从逻辑回归的内容进行分享,逻辑回归的思想其实在现实生活中很常见,比如通过一段编程的能
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:190464
    • 提供者:weixin_38663516
  1. 机器学习推导+python实现(九):线性支持向量机

  2. 写在开头:今天将跟着昨天的节奏来分享一下线性支持向量机。 内容安排 线性回归(一)、逻辑回归(二)、K近邻(三)、决策树值ID3(四)、CART(五)、感知机(六)、神经网络(七)、线性可分支持向量机(八)、线性支持向量机(九)、线性不可分支持向量机(十)、朴素贝叶斯(十一)、Lasso回归(十二)、Ridge岭回归(十三)等。 昨天再分享线性可分支持向量机的时候,大家不免会发现其既定前提是数据线性可分,但实际生活中对于线性可分的数据来说还是比较少,那么如何在线性可分支持向量机的基础上进行改机使
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:173056
    • 提供者:weixin_38565818