您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 深度学习相关知识

  2. 一.过拟合、欠拟合及其解决方案 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 方法1:L2 范数正则化 方法2:丢弃法 二.梯度消失、梯度爆炸 三.循环神经网络进阶 1.GRU 2.LSTM 长短期记忆
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38656142
  1. 【Pytorch】动手学深度学习(二)

  2. 学习安排如下: Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer(1天) Task05:卷积神经网络基础;leNet;卷积神经网络进阶(1天) Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶(1天) 梯度消失部分,主要是协变量偏移、标签偏移、概念偏移三个概念,第一次接触; 循环神经网络以及过拟合部分比较容易理解; Task04:机器翻译及
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:51200
    • 提供者:weixin_38717359
  1. 深度学习(三)————过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

  2. 目录 过拟合、欠拟合及其解决方案 训练误差和泛化误差 过拟合和欠拟合的概念 模型复杂度和误差之间的关系 解决过拟合的方案 梯度消失及梯度爆炸 循环神经网络进阶 GRU LSTM 深度神经网络 过拟合、欠拟合及其解决方案 训练误差和泛化误差        在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:408576
    • 提供者:weixin_38635092