您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 动手学深度学习-学习笔记(四)

  2. 本文的主要内容有:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer。 一、机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_88
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:770048
    • 提供者:weixin_38664556
  1. 深度学习(四)————机器翻译及相关技术、注意力机制与Seq2seq模型、Transformer

  2. 目录   机器翻译及相关技术 注意力机制与seq2seq模型 Transformer 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 机器翻译流程:数据预处理,主要模型:encode-decode,seq2seq 注意力机制与seq2seq模型 注意力机制:https://blog.csdn.net/mpk_no1/articl
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:191488
    • 提供者:weixin_38704565
  1. 动手学深度学习(四)

  2. 机器翻译及相关技术; 注意力机制与Seq2seq模型; Transformer 一 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 首先,将数据集清洗、转化为神经网络的输入minbatch,分词,建立词典。# Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 二 注意力机制 在Do
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:618496
    • 提供者:weixin_38720997