点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 深度学习PyTorch入门(五)
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
(翻译)60分钟入门深度学习工具-PyTorch.pdf
(翻译)60分钟入门深度学习工具-PyTorch 公号:机器学习初学者 一、Pytorch是什么? 二、AUTOGRAD 三、神经网络 四、训练一个分类器 五、数据并行
所属分类:
互联网
发布日期:2020-04-10
文件大小:1048576
提供者:
qq_33866063
PyTorch的深度学习入门教程之构建神经网络
前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。 Part3:使用PyTorch构建一个神经网络 神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。 这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。 训练神经网络的典型步骤如下: (1) 定义
所属分类:
其它
发布日期:2021-01-01
文件大小:76800
提供者:
weixin_38514805
深度学习PyTorch入门(五)
卷积神经网络基础 互相关运算与卷积运算 卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。 特征图与感受野 二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xxx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xxx的感受野(receptive
所属分类:
其它
发布日期:2021-01-20
文件大小:406528
提供者:
weixin_38703794