您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. (翻译)60分钟入门深度学习工具-PyTorch.pdf

  2. (翻译)60分钟入门深度学习工具-PyTorch 公号:机器学习初学者 一、Pytorch是什么? 二、AUTOGRAD 三、神经网络 四、训练一个分类器 五、数据并行
  3. 所属分类:互联网

    • 发布日期:2020-04-10
    • 文件大小:1048576
    • 提供者:qq_33866063
  1. PyTorch的深度学习入门教程之构建神经网络

  2. 前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。 Part3:使用PyTorch构建一个神经网络 神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。 这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。 训练神经网络的典型步骤如下: (1)  定义
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:76800
    • 提供者:weixin_38514805
  1. 深度学习PyTorch入门(五)

  2. 卷积神经网络基础 互相关运算与卷积运算 卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。 特征图与感受野 二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xxx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xxx的感受野(receptive
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:406528
    • 提供者:weixin_38703794