您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 点云pcl库学习 官方demo示例教程 原理解析代码注释

  2. PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库, 它实现了大量点云相关的通用算法和高效数据结构, 涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。 支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。 如果说OpenCV是2D信息获取与处理的结晶, 那么PCL就在3D信息获取与处理上具有同等地位,PCL是BSD授权方式, 可以免费
  3. 所属分类:VR

    • 发布日期:2018-05-08
    • 文件大小:51380224
    • 提供者:xiaoxiaowenqiang
  1. 点云识别用的到的多种单个物体点云

  2. 做物体识别用的到的单个物体点云,都已经分割完全,有多个种类,适合新手进行算法验证
  3. 所属分类:数据库

    • 发布日期:2018-09-03
    • 文件大小:227328
    • 提供者:ccloce
  1. PCL点云拼接 cturtle.pcd 文件

  2. PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。
  3. 所属分类:其它

    • 发布日期:2020-04-30
    • 文件大小:5242880
    • 提供者:tony2278
  1. 地面三维激光扫描点云数据识别算法研究

  2. 地面三维激光扫描点云数据识别算法研究,郝刚,,本文基于地面激光扫描点云数据中存在异常的特点,应用了基于移动曲面的机载激光点云数据滤波方法,并对该算法的原理进行了分析,
  3. 所属分类:其它

    • 发布日期:2020-02-25
    • 文件大小:194560
    • 提供者:weixin_38717870
  1. 地面三维激光扫描标靶中心识别算法研究

  2. 地面三维激光扫描标靶中心识别算法研究,苏晓蓓,郝刚,地面三维激光扫描仪是通过扫描标靶中心获得点云的海量散乱点数据,其扫描标靶中心识别的精确与否直接影响了DEM和DSM建立的精度和质
  3. 所属分类:其它

    • 发布日期:2020-01-28
    • 文件大小:393216
    • 提供者:weixin_38725902
  1. 3D-Terrain-Recognition:ALS点云的多视图和多模式表示的深度融合,用于3D地形场景识别-源码

  2. ALS点云的多视图和多模式表示的深度融合,用于3D地形场景识别 ALS点云的多视图和多模式表示的深度融合,用于3D地形场景识别 秦楠楠,胡向云*,戴恒明 [] 地形场景类别不仅可用于某些地理或环境研究,而且还可用于为多个点云处理任务选择合适的算法或算法的合适参数,以实现更好的性能。 但是,目前很少有针对地形场景分类的点云处理研究。 本文提出了一种新的深度学习框架,该框架使用稀疏点云的2D表示进行3D地形场景识别。 该框架有两个关键组成部分。 (1)首先,从机载激光扫描点云中提取几个合适的判别性
  3. 所属分类:其它

    • 发布日期:2021-03-08
    • 文件大小:2097152
    • 提供者:weixin_42122432
  1. 融合改进场力和判定准则的点云特征规则化

  2. 为了快速有效地获取散乱点云中的边界特征点和边界线, 提出了一种融合改进场力和判定准则的点云特征规则化算法。利用改进的k-d(k-dimensional)树搜索k邻域, 以采样点及其k邻域为参考点集拟合微切平面并向该平面投影,在微切平面上建立局部坐标系以将三维坐标转化成二维坐标, 利用场力和判定准则识别边界特征点; 依据矢量偏转角度和距离对边界特征点进行排序连接; 通过改进的三次B样条拟合算法对边界线进行平滑拟合。实验结果表明, 该算法能够快速有效地提取边界特征点, 且拟合后的边界线偏差量级为10
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:8388608
    • 提供者:weixin_38599231
  1. 基于直线截距比的三维点云特征提取

  2. 提出一种新的点云特征检测算子——直线截距比特征检测算子。根据相邻点之间的几何关系提出直线截距比,构建了特征筛选条件函数,利用关于点距的高斯函数对特征筛选条件函数进行修正。实验结果表明,随着模型中噪声强度的增加,所提算法的特征误识别率更低。所提算法能快速、准确地筛选出特征点,且具有良好的抗噪能力和更强的特征识别能力。
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:13631488
    • 提供者:weixin_38535808
  1. 复杂环境下异形多目标识别与点云获取算法

  2. 研究了复杂环境下不同形状物体的快速识别、定位以及表面检测,旨在满足智能机器在线作业时对复杂环境中的目标进行同步性抓取以及表面检测等需求,讨论了异形物体的多目标快速识别、定位、立体匹配及点云后处理算法。首先,基于稳健主成分分析识别出场景中的新增目标,再运用改进k均值聚类对各目标进行图像定位。然后,通过支持向量机筛选出感兴趣区域,并借助外极线约束进行一维搜索获取双目图像中的待匹配区域,快速获得局部三维点云。最后,进行特定的点云去噪处理以减小误差。实验结果表明,相比于传统方法,本文算法有效缩短了程序运
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:14680064
    • 提供者:weixin_38553681
  1. 基于VG-DBSCAN算法的大场景散乱点云去噪

  2. 针对城市环境下三维激光雷达(LiDAR)点云数据密度不均匀、离群噪点多而不利于后期点云帧间匹配的问题,提出一种应用于城市环境下大规模散乱LiDAR点云的离群噪点滤除算法。该算法对传统的基于密度的噪声应用空间聚类(DBSCAN)算法进行改进,通过对三维点云进行体素栅格划分,创建了一个由栅格单元组成的集合,以此大幅减小每个对象在数据空间中邻域的搜索范围。改进后的算法能够快速发现各个聚类,使目标点云与离群点分离,从而剔除点云中的离群噪点。实验结果表明:所提算法能够实时处理点云数据,在保证点云三维几何特
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:3145728
    • 提供者:weixin_38688890
  1. 大场景内建筑物点云提取及平面分割算法

  2. 提出一种从地面激光点云数据中提取建筑目标并进行分割的新方法,该方法利用半径渐变的主成分分析法确定各点局部几何特征(最佳半径,法向量、维度特征);根据几何特征将地面点从原始点云中剔除,将非地面点按距离聚类形成点云簇,并对点云簇进行整体特征分析,识别建筑物目标;依据点的局部特征设置区域增长法生长准则对建筑物目标进行平面分割并对分割结果进行优化。实验结果表明,该方法不仅能快速有效提取大场景中的建筑物目标进行分割,并且解决了传统区域增长法不稳定的问题,提高了建筑物点云平面分割的精确性和可靠性。
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:2097152
    • 提供者:weixin_38630697
  1. 基于层级边缘卷积的三维点云分类

  2. 由于激光点云数据的无序性、离散性、稀疏性,基于深度学习的三维点云数据的特征提取具有一定难度。针对目前局部信息提取不充分,区域信息的合并有限的问题,提出了一种基于层级边缘卷积的点云分类网络,用于三维视觉中点云模型识别任务。本文采用层级结构的思想,通过层级几何信息模块对特征进行有效提取和归纳。对于每个层级几何信息提取模块,首先对点云模型进行下采样并构建局部区域,对每个局部区域中点与点之间的距离和特征进行建模,获得局部区域的几何信息,最后聚合多个采样点的局部结构特征。实验结果表明,本算法在ModelN
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:721920
    • 提供者:weixin_38625351
  1. 区域回波比率与拓扑识别模型结合的城区激光雷达点云分类方法

  2. 针对城区激光雷达点云提出一种全自动分类方法。采用具备一定抗过分割能力的拓扑启发式分割算法对栅格高程图像进行面向对象分割;依据迭代最大类间方差(Otsu)聚类方法及两种拓扑模型实现地面图斑对象与非地面图斑对象初步分离,并合并邻接非地面对象;在地物对象中引入多次回波比率检测树木对象,采用区域面积、建筑物高度等条件区分建筑物及其他两类地物,并依据栅格索引分类。选择具有丰富地物类型的典型城区点云数据进行实验,结果表明,该算法具有良好分类精度及较强实用价值。
  3. 所属分类:其它

    • 发布日期:2021-02-09
    • 文件大小:4194304
    • 提供者:weixin_38698860
  1. 基于植被指数限制分水岭算法的机载激光点云建筑物提取

  2. 建筑物提取在建筑物重建和城市管理中起着重要的作用。利用基于植被指数限制的分水岭算法分割机载激光雷达点云,并利用一定的规则识别建筑物区域。对激光点云进行内插生成网格数据;利用植被指数限制的分水岭分割算法分割激光点云生成的数字表面模型数据,在分水岭淹没过程中引入植被指数可以较好地区分建筑物和植被区域;在区域相邻关系的基础上,利用一些准则(高程差值、尺寸和植被指数)识别建筑物区域。利用国际摄影测量与遥感学会基准数据中法伊英根测试区域对建筑提取结果进行评价,在像元级别,平均完整度、正确度和质量分别为89
  3. 所属分类:其它

    • 发布日期:2021-02-07
    • 文件大小:3145728
    • 提供者:weixin_38726193
  1. 基于三维点云匹配的手掌静脉识别

  2. 针对现有手掌静脉认证系统误拒率较高以及不支持大数据集匹配的问题,设计了基于透射式光源的双目视觉静脉三维点云重建装置,提出了基于三维点云匹配的手掌静脉认证算法。系统使用850 nm 透射式发光二极管(LED)光源作为照明装置,由双目摄像机拍摄静脉视差图像进行三维重建。选择手掌静脉作为特征点描述其空间三维结构,提出了一种改进的内核相关性分析方法匹配三维点云。针对200 组点云数据的实验结果验证了该方法的可行性和有效性,识别率达到了98%,误拒率2%,误识率0%,总特征维数约8000 至12000 维
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:4194304
    • 提供者:weixin_38722184
  1. 空间栅格动态划分的点云精简方法

  2. 常规的特征保持点云精简方法需计算全部点云的微分信息,但直接计算高密度或含噪点云的微分信息存在一定偏差,导致点云精简效果不佳。提出一种基于栅格动态划分的点云精简方法。首先对模型进行空间栅格初划分,利用随机采样一致性算法剔除栅格内的干扰点,然后采用最小二乘法对剩余点进行平面拟合并计算平整度值,根据平整度值判别该栅格是否细分,将平坦区域压入大间距栅格内,特征丰富区域划分至小栅格中。针对小栅格内的点引入高斯函数降低远距离点对特征识别贡献的权重,综合曲面变化度和邻域法向量夹角信息共同识别特征点并保留,大栅
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:12582912
    • 提供者:weixin_38642864
  1. 三维点云中关键点误匹配剔除方法

  2. 三维点云关键点配准与识别过程中存在寻找匹配对不理想、大量误匹配对及配准与识别准确率下降等问题,提出了一种新颖的关键点误匹配剔除方法。在关键点检测阶段, 基于边缘点及其邻域点大多分布在同侧的特性, 提出了一种边缘点检测算法, 剔除处于边缘的关键点, 以提高关键点的可重复性和可匹配性, 并降低关键点特征匹配的误匹配率。在关键点特征匹配阶段, 对经由最近邻算法得到的初始关键点匹配对, 通过Kmeans算法和分裂法, 剔除掉大量错误的关键点匹配对, 从而提高三维点云之间关键点的匹配率。实验结果表明, 该
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:10485760
    • 提供者:weixin_38737144
  1. 面向增强现实的点云配准算法

  2. 针对增强现实中基于目标点云的跟踪与注册问题,提出一种稳健Z分数混合树的配准算法。通过局部邻域内的点至拟合平面的垂直距离以及沿平面法线点的分布来识别噪点,运用绝对中位差增强Z分数的稳健性,同时,采用混合树算法提高最近点的搜索效率。将上述算法应用于增强现实的成像原理中,以对其进行理论论证。分别利用斯坦福大学某研究组的点云数据集和真实采集数据对该算法进行验证。结果表明,在含噪点云集中,该算法能在保持一定精度的同时有效提高配准效率,其用时约为对比算法的5%~10%。
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:3145728
    • 提供者:weixin_38718434
  1. 基于点云内骨架的分割算法

  2. 提出一种有效的三维点云骨架分割的方法,分割后的结果可用于三维点云物体识别和分类。利用稳健性较强的L1-中心骨架算法对点云数据进行骨架提取,可得到一系列骨架点;利用基于八叉树的区域增长分割方法对已经得到的骨架点进行分割,选取法向量和残值作为判定标准;利用OpenGL库编程把分割出的各个部分进行骨架连线。对多种形状的点云数据(包括动物模型、植物模型、人体模型、字母模型)进行实验,该方法均得到较好的结果。
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:6291456
    • 提供者:weixin_38738506
  1. 基于特征线拟合的微型复杂曲面点云分割方法

  2. 点云数据分块是模型反求过程中的重要环节,分割优劣影响模型重建的效率和精度。微型复杂曲面零件由多个微小图形并列、交叉组合而成,特征点精简、图元识别难度大,是数据分割中的难点。根据模型造型特点,分离带状特征点的下边界点作为拟合特征线的真实特征点;由每个图元端点的邻近关系和端点附近特征点的排列趋势识别属于同一图形的图元;利用以边界为约束的区域生长算法和三角形叉积的算法分割同一曲面的点云。实验结果表明:该方法克服了现有方法处理微型复杂曲面点云时出现的过分分割和分割不足的问题,为高质量的模型重建提供了基础
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:8388608
    • 提供者:weixin_38598613
« 12 3 4 »