传统三维(3D)点云配准过程中存在配准误差高、计算量大及耗时长等问题,针对该问题,提出了一种3D点云中关键点的配准与优化算法。在关键点选取阶段,用边缘点检测算法剔除边缘关键点,以提高关键点特征描述的全面性和重复性,降低3D点云配准误差。在3D点云配准阶段,用K-维树(KD-tree)加速的最近邻算法和迭代最近点算法剔除粗配准结果中的误配准关键点,降低配准误差,提高3D点云配准的速度与精度。实验结果表明,本算法在不同点云数据下,均能获得良好的配准结果。与传统3D点云配准算法相比,本算法的平均配准速