您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 电容充放电时间计算

  2. 详细的描述电容的充电和放电过程,让你很好的掌握电容的知识
  3. 所属分类:硬件开发

    • 发布日期:2016-07-24
    • 文件大小:1048576
    • 提供者:d598925144
  1. 注册电气工程师发输变电标准汇编 34-1997 交流电气装置的过电压保护和绝缘配合.pdf

  2. 注册电气工程师发输变电标准汇编 34-1997 交流电气装置的过电压保护和绝缘配合pdf,注册电气工程师发输变电标准汇编 34-1997 交流电气装置的过电压保护和绝缘配合DL/T620-1997 )3kⅤ~10kⅴ钢筋混凝土或金属杄塔忺架空线路杺成的系统利所有35kV、66kⅴ系统,( b)3kV-10kⅤ非纲筋混凝土或非金属杅塔的架线路枃成的系统,当电i为 1)3kV和6kV时,33A; )10kY时,20A c)3k~10kⅤ电缆线路构成的系统,30A 3.1.33kⅤ~20kⅤ具有发电机
  3. 所属分类:其它

    • 发布日期:2019-10-20
    • 文件大小:2097152
    • 提供者:weixin_38743506
  1. 基于UCC3809设计的反激变换器(50W).pdf

  2. 基于UCC3809设计的反激变换器(50W)pdf,UCC3809设计反激变换器(50W)在反激变换器中,变压器实际上是一个多绕组的耦和电感,变压器磁芯提 供耦合及隔离,而电感量给出储能大小,储存在空气隙中的电感的能量如下式 E Lp·(PEAK 2 (2) 此处,E为焦耳,Lp为初级电感,单位为享利。 Ipeak为初级电流,单位安 培。当开关导通时,D1反向偏置,没有电流流过二次绕组,初级绕组中流过斜 率如下式的电流 IN(min)v Rds(on) △t P (3) 此处,V1N(min)与
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:2097152
    • 提供者:weixin_38743481
  1. 开关分段调色温方案-40W的方案.pdf

  2. 开关分段调色温方案-40W的方案pdf,S4225S/D系列芯片是开关调色温的专用芯 片,该芯片内置了400V的开关管,简化了外围电 路结构。该系列芯片采用了芯飞凌的专利技术,能 够既可以最大限度地简化外围的原件个数,又可以 保证多个电源同时应用时的逻辑一致性。 为了扩大应用的领域, S4225S/D系列可以使 用在隔离反激, Buck或Buck-Boost结构中,给电 源的设计提供便利性。S4225s/D系列开关调色温控制芯片 系列产品功能说明表 Part no.驱动路数 状态顺
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:3145728
    • 提供者:weixin_38743506
  1. 信号的参数及测量方法.pdf

  2. 信号的参数及测量方法pdf,电压测量是电子电路测量的一个重要内容。在集中参数电路里,电压、电流和功率是表征电信号能量的三个基本参量。从测量的观点来看,测量的主要参量是电压。因为在标准电阻的两端若测出电压值,那么就可以通过欧姆定律计算求得电流和功率。很多电子仪器和电子设备,它们的许多工作特性均可视为电压的派生量,都用电压表作指示装置构成辅助监控设备。因此,电压测量是其他许多电参量和非电量测量的基础。9.1信号的参数及测量方法-电子产品调修常用仪表应用手册-中国工具书网络Page3of19 综上所述
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:1048576
    • 提供者:weixin_38744270
  1. 电容放电时间计算表,根据电压和等效电阻电容值,计划芯片内部放电时间,评估IP DROP和瞬态电压电流对芯片VR后级电路的影响

  2. 电容放电时间计算表 根据电压和等效电阻电容值,计划芯片内部放电时间,评估IP DROP和瞬态电压电流对芯片VR后级电路的影响
  3. 所属分类:嵌入式

    • 发布日期:2010-06-28
    • 文件大小:2048
    • 提供者:alterli
  1. 电容充放电时间计算方法

  2. L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。RC电路的时间常数:τ=RC充电时,uc=U×[1-e(-t/τ)] U是电源电压放电时,uc=Uo×e(-t/τ) Uo是放电前电容上电压RL电路的时间常数:τ=L/RLC电路接直流,i=Io[1-e(-t/τ)] Io是最终稳定电流LC电路的短路,i=Io×e(-t/τ
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:175104
    • 提供者:weixin_38740827
  1. 基于STM32的电容触摸按键的原理解析

  2. 原理: R:外接电容充放电电阻。 Cs:TPAD和PCB间的杂散电容。 Cx:手指按下时,手指和TPAD之间的电容。 开关:电容放电开关,由STM32IO口代替。 没有按下的时候,充电时间为T1(default)。按下TPAD,电容变大,所以充电时间为T2。我们可以通过检测充放电时间,来判断是否按下。如果T2-T1大于某个值,就可以判断有按键按下。 检测电容触摸按键过程: ①TPAD引脚设置为推挽输出,输出0,实现电容放电到0。 ②TPAD引脚设置为浮空输入(IO复位后的状态
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:56320
    • 提供者:weixin_38624519
  1. 输入侧与输出侧电解电容如何计算?

  2. 输入侧的电解电容计算我们一般按照在最低输入电压下,最大输出的情况下,要求电解电容上的纹波电压低于多少个百分点来计算。当然,如果有保持时间的要求,那么需要按照保持时间的要求重新计算,二者之中,取大的值。假如在最低输入电压下,电源的输入功率为Pin,最低输入交流电压有效值为Vinacmin,那么我们一般认为此时整流后的直流电压为Vinmin=1.2×Vinacmin,由于在交流两次充电周期间,对后面变换器的供电都是由电容储能来保证的,那么电压跌落是可以计算出来的:C×ΔV=I×Δt,ΔV是电压纹波,
  3. 所属分类:其它

    • 发布日期:2020-07-13
    • 文件大小:92160
    • 提供者:weixin_38736652
  1. 高压并联电容器再投入的最小时间间隔

  2. 在刚脱开电网的高压并联电容器的端子间存在一定的剩余电压。这种剩余电压如不能及时下降到允许值以下,会对操作人员的安全及电容器的安全运行带来危害。所以在大部分高压并联电容器中都装设有内放电电阻。国家标准规定,这些装设在电容器中的放电电阻应能在电容器脱开电网后的10min内将电容器端子间的剩余电压从 降低到75V及以下。这个内放电电阻的阻值可用式(1)进行计算,即: 式中:R—内放电电阻(MΩ);t—电压从降到UR的时间(s);C—电容器的电容(μF);UN—电容器的额定电压(kV);UR
  3. 所属分类:其它

    • 发布日期:2020-07-12
    • 文件大小:66560
    • 提供者:weixin_38714910
  1. 电容 放电时间的计算

  2. 详细介绍:怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量。 如:单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作
  3. 所属分类:硬件开发

    • 发布日期:2011-04-07
    • 文件大小:15360
    • 提供者:jltsun
  1. 超级电容容量及放电时间计算方法

  2. 超级电容容量及放电时间计算方法   很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。   C(F):超电容的标称容量;   R(Ohms):超电容的标称内阻;   ESR(Ohms):1KZ下等效串联电阻;   Vwork(V):正常工作电压   Vmin(V):截止工作电压;   t
  3. 所属分类:其它

    • 发布日期:2020-10-20
    • 文件大小:38912
    • 提供者:weixin_38636577
  1. 开关电源原理与设计(连载7)反转式串联开关电源储能滤波电容的计算

  2. 转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。但要注意,即使是在占空比D等于0.5的情况下,滤波电容器充、放电的时间都不相等,滤波电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。这是整流滤波电路的普遍规律。
  3. 所属分类:其它

    • 发布日期:2020-10-26
    • 文件大小:141312
    • 提供者:weixin_38683930
  1. 电源技术中的反转式串联开关电源储能滤波电容的计算

  2. 开关电源原理与设计(连载七)   1-3-3.反转式串联开关电源储能滤波电容的计算   反转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。但要注意,即使是在占空比D等于0.5的情况下,滤波电容器充、放电的时间都不相等,滤波电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。这是整流滤波电路的普遍规律。   从图1-8可以看出,在占空比D等于0.5的情况下,电
  3. 所属分类:其它

    • 发布日期:2020-11-04
    • 文件大小:79872
    • 提供者:weixin_38529486
  1. 电源技术中的电荷泵的基本原理

  2. 电容是存储电荷或电能,并按预先确定的速度和时间放电的器件。如果一个理想的电容以理想的电压源%进行充电,如图1(a)所示,则电容将依据Dirac电流脉冲函数立即存储电荷,如图1(b)所示。存储的`总电荷数量按下式计算。   实际的电容具有等效串联阻抗(ESR)和等效串联电感(ESL),两者都不会影响到电容存储电能的能力。然而,它们对开关电容电压变换器的整体转换效率有很大的影响。实际电容充电的等效电路如图1(c)所示,其中Rs.是开关的电阻。ESL为实际的电容等效串联电感,则在电容的充电电流路
  3. 所属分类:其它

    • 发布日期:2020-11-11
    • 文件大小:205824
    • 提供者:weixin_38675969
  1. RC电路电容充放电时间的计算(含计算公式)

  2. 基于电容充放电公式Vt=V0+(V1-V0)*[1-exp(-t/RC)]和放电公式Vt=E*exp(-t/RC),附带公式推导过程,并且在excel已用公式根据已知条件自动计算充电电压,充电时间。
  3. 所属分类:硬件开发

    • 发布日期:2020-12-01
    • 文件大小:15360
    • 提供者:Rochay
  1. 超级电容容量及放电时间计算方法

  2. 超级电容容量及放电时间计算方法   很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。   C(F):超电容的标称容量;   R(Ohms):超电容的标称内阻;   ESR(Ohms):1KZ下等效串联电阻;   Vwork(V):正常工作电压   Vmin(V):截止工作电压;   t
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:37888
    • 提供者:weixin_38730129
  1. 电容充放电时间计算方法

  2. 1、L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。   RC电路的时间常数:τ=RC   充电时,uc=U×[1-e(-t/τ)] U是电源电压   放电时,uc=Uo×e(-t/τ) Uo是放电前电容上电压   RL电路的时间常数:τ=L/R   LC电路接直流,i=Io[1-e(-t/τ)] Io是终稳定
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:79872
    • 提供者:weixin_38646914
  1. 电容充放电时间的计算

  2. 1、L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。   RC电路的时间常数:τ=RC   充电时,uc=U×[1-e(-t/τ)]     U是电源电压   放电时,uc=Uo×e(-t/τ)        Uo是放电前电容上电压   RL电路的时间常数:τ=L/R   LC电路接直流,i=Io[1-e(-t
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:77824
    • 提供者:weixin_38687928
  1. 模块化多电平换流器子模块均压电阻参数优化策略

  2. 子模块的均压电阻在模块化多电平换流器(MMC)启动过程中起均压作用,同时在停运过程中作为电容的放电电阻,但目前缺乏均压电阻参数设计的理论依据和优化策略。通过优化子模块仿真模型引入均压电阻和取能电源相关参数;分析了均压电阻参数在MMC启动过程中对子模块电容均压的影响,阐明了均压电阻过大时电容均压效果劣化的机理;同时修正了MMC停运后子模块电容放电时间的计算方法;最后提出满足电容均压、放电时间和功率要求的均压电阻参数优化策略和具体设计步骤。依托厦门柔性直流输电工程给出均压电阻参数设计实例并进行相关试
  3. 所属分类:其它

    • 发布日期:2021-01-14
    • 文件大小:1005568
    • 提供者:weixin_38570202
« 12 3 »