您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 离群样本划分的半监督模糊学习策略

  2. 建立一种离群样本划分的半监督模糊学习算法模型.首先,提出一种基于Hopfield参数估计的松弛条件模糊鉴别分析算法,重新定义每一个样本的隶属度,并在特征抽取的过程中,根据隶属度对散布矩阵的定义所做的贡献获得每个样本相应的类别信息,由此获得普通样本分类信息.其次,根据样本隶属度的分布信息划分出离群样本空间,将普通样本分类结果作为离群样本聚类的先验类属信息,并对该空间样本提出一种新的半监督模糊学习策略进行动态聚类.该算法同时具备了监督学习和无监督学习方法的优势,克服了传统聚类缺乏类过程知识的缺点,可
  3. 所属分类:其它

    • 发布日期:2021-02-21
    • 文件大小:1048576
    • 提供者:weixin_38519387