LDA(Latent Dirichlet Allocation)是一个分层的概率主题模型,目前被广泛地应用于文本挖掘。这种模型既不考虑文档与文档之间的顺序关系,也不考虑同一篇文档中词与词之间的顺序关系,简化了问题的复杂性,同时也为模型的改进提供了契机。针对此问题提出了基于滑动窗口的主题模型,该模型的基本思想是文档中的一个单词的主题与其附近若干单词的主题关系越紧密,受附近单词主题的影响越大。根据窗口和滑动位移的大小,把文档切割为粒度更小的片段。同时,针对大数据集和数据流问题,提出了在线滑动窗口主题