您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. pytorchTask03打卡

  2. pytorchTask03打卡 文章目录pytorchTask03打卡1.过拟合、欠拟合以及解决方案1.1训练误差和泛化误差1.2验证数据集与K-fold验证1.3过拟合和欠拟合1.4导致过拟合和欠拟合的关键因素2.L2正则化3.drop out4.循环神经网络进阶4.1 RNN简介4.1.1RNN的起因4.1.2为什么需要RNN4.1.3RNN都能做什么4.1.4 LSTM4.1.5 GRU4.2 循环网络的向后传播(BPTT)4.3 词嵌入(word embedding)4.4 其他重要概念
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:152576
    • 提供者:weixin_38734361
  1. 深度学习基础3——过拟合欠拟合、梯度消失与梯度爆炸、常见循环神经网络

  2. 深度学习基础3 文章目录深度学习基础3一、过拟合欠拟合1.概念2.解决过拟合欠拟合的方法(1)权重缩减(2)丢弃法二、梯度消失与梯度爆炸1.消失与爆炸2.随机初始化3.影响模型效果的其他因素三、循环神经网络进阶1.门控循环神经网络/门控循环单元(GRU)2.LSTM:长短期记忆3.深度循环神经网络(Deep RNN)4.双向循环神经网络(BRNN)   一、过拟合欠拟合 1.概念 欠拟合:训练误差(训练集的损失函数的值)较大。 过拟合:训练误差远远小于泛化误差(任意测试样本误差的期望)。 验证集
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:312320
    • 提供者:weixin_38606639
  1. 过拟合与欠拟合、梯度消失与爆炸、RNN进阶

  2. 过拟合与欠拟合 专业名词解释: 泛化误差(generalization error):指模型在任意一个测试数据样本上表现出来的误差的期望,我们通常用测试集上的误差来近似看待. 验证集(validation set):预留一部分训练数据集出来用于验证和看模型的表现结果,并用来进行模型选择 K折交叉验证(K-fold cross-validation):针对训练数据不够用时的一种改善方法。把原始训练数据集分割成不重合的K份子数据集,然后做K次的训练和验证,最后对这K次的训练误差和验证误差分别求平均
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:321536
    • 提供者:weixin_38717171