您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 通过正则化自我表示进行无监督特征选择

  2. 通过去除不相关和多余的特征,特征选择旨在找到具有良好泛化能力的原始特征的紧凑表示。 随着无标签数据的普及,无监督特征选择已显示出可有效减轻维数的诅咒,对于全面分析和理解无标签高维数据的无数至关重要,这是由于子空间聚类中低秩表示法的成功所致,我们提出了一种用于无监督特征选择的正则化自我表示(RSR)模型,其中每个特征都可以表示为其相关特征的线性组合。 通过使用L-2,L-1-范数来表征表示系数矩阵和表示残差矩阵,RSR有效地选择了代表性特征并确保了对异常值的鲁棒性。 如果某个特征很重要,则它将参与
  3. 所属分类:其它

    • 发布日期:2021-03-03
    • 文件大小:824320
    • 提供者:weixin_38691703