带有骨骼跟踪技术的Microsoft Kinect的推出为基于骨骼的人类动作识别开辟了新的潜力。 但是,从深度图序列通过骨骼跟踪生成的3D人体骨骼通常非常嘈杂且不可靠。 在本文中,我们介绍了一种基于鲁棒性信息关节的人体动作识别方法。 受人类视觉系统本能的启发,我们通过关节位置的微分熵分析了每个动作类别的人类关节的平均贡献。 大多数动作之间存在显着差异,并且贡献率与常识高度一致。 我们提出了一种新颖的方法,称为骨架上下文,以测量姿势之间的相似性并将其用于动作识别。 通过提取每个信息关节的多尺度成对