您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 开关电源高频变压器单向设计法

  2. 完整的开关电源变压器设计步骤繁多。对于确定输出功率条件下的开关电源变压器设计,本文推荐简单的六 步设计法:确定磁芯尺寸规格,确定开关电源激励频率,确定初级绕组匝数,确定最大激磁电流值,确定变压器初级线圈电感 量,确定磁路气隙厚度。改变绕组电感量与绕组匝数相联系的习惯性处理方法,将变压器绕组匝数与磁饱和因素相联系,线 圈电感量与磁路磁阻相联系,基本达到一个单向性的设计过程。这一方法特别适合普通设计人员快速入门。
  3. 所属分类:专业指导

    • 发布日期:2010-03-01
    • 文件大小:466944
    • 提供者:miaosxiong
  1. 推挽逆变的工作原理与整流逆变电源的设计.pdf

  2. 推挽逆变的工作原理与整流逆变电源的设计pdf,推挽逆变电路以其结构简单、变压器磁芯利用率高等优点得到了广泛应用,尤其是在低压大电流输入的中小功率场合;同时全桥整流电路也具有电压利用率高、支持输出功率较高等特点。鉴于此,本文提出了一种推挽逆变车载开关电源电路设计方案。该方案在推挽逆变-高频变压器-全桥整流设计的基础上,进一步设计了24VDC输入 -220VDC 输出、额定输出功率600W的DC-DC变换器,并采用AP法设计相应的推挽变压器。
  3. 所属分类:其它

    • 发布日期:2019-09-13
    • 文件大小:195584
    • 提供者:weixin_38744207
  1. TNY256型单片机开关电源及其应用

  2. TNY256内含一个700V功率MOSFET开关管和一个电源控制器,与传统的PWM脉宽调制控制方式不同,该器件采用简单的开/关控制来调节输出电压使之稳定。TNY256的内部结构主要包括振荡器、使能输入、5.8V稳压器、BP脚欠压保护电路、过热保护电路、过流保护电路、自动重启动计数器、输入欠压检测电路、700V功率MOSFET。TNY256在中等负载或轻负载下工作时会跳过一些时钟周期,这容易使高频变压器产生音频噪声干扰。为减小此干扰,宜选磁通密度小于0.3T的磁芯材料。此外,最好用TVS二极管和陶
  3. 所属分类:其它

    • 发布日期:2020-03-04
    • 文件大小:670720
    • 提供者:weixin_38526914
  1. 电感 变压器.rar

  2. 制造行业、电感/变压器制造、模块电源生产、磁芯类知识,都可参考,包含以下几个文档 磁芯主要概念与定义 磁性元器件设计一些基础认识 开关电源磁性材料损耗及温升简介 [兼容模式] 开关电源中磁性元器件 开关电源中高频磁性元件设计常见错误概念辨析 浅谈电子变压器主要材料特性及检验方法 世界各大公司功率材料牌号对照表
  3. 所属分类:制造

    • 发布日期:2020-03-03
    • 文件大小:4194304
    • 提供者:wu_minmin
  1. 基于UCC3809设计的反激变换器(50W).pdf

  2. 基于UCC3809设计的反激变换器(50W)pdf,UCC3809设计反激变换器(50W)在反激变换器中,变压器实际上是一个多绕组的耦和电感,变压器磁芯提 供耦合及隔离,而电感量给出储能大小,储存在空气隙中的电感的能量如下式 E Lp·(PEAK 2 (2) 此处,E为焦耳,Lp为初级电感,单位为享利。 Ipeak为初级电流,单位安 培。当开关导通时,D1反向偏置,没有电流流过二次绕组,初级绕组中流过斜 率如下式的电流 IN(min)v Rds(on) △t P (3) 此处,V1N(min)与
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:2097152
    • 提供者:weixin_38743481
  1. 陈为:电动汽车OBC磁元件分析与设计.pdf

  2. 陈为:电动汽车OBC磁元件分析与设计pdf,电动汽车电力电子与磁性元件:新能源汽车已成为磁性元件、磁材料企业的重点关注项目。IUZUIOU UNIVERSITY 磁元件的总体考虑 EMC (Manufacture Mechanica Safet Cost Form factor Thermal dissipati 磁芯 绕组 形状 线形结构 线规 EMI Freq Solid Stacked Diameter Power Sandwiched Strain OSS G和 磁芯的形状和材料 口磁合
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:6291456
    • 提供者:weixin_38744435
  1. 反激式高频变压器的分析与设计.pdf

  2. 反激式高频变压器的分析与设计pdf,P,=P(1/+1) 当原边无中心抽头,副边有中心抽头时: P=P(1/n+√2) 6) 当原边与副边均有中心抽头时 P=P。(1/y+1)v2 对于图1的拓扑结构,Pt的表达式适用于式(5)。 工作磁通密度变化量△Ba则根据不同的电路结构和磁芯饱和磁通密度确定,若变换器 为单端电路,磁芯磁通的变化曲线如图2(a)所示,因此△Bac应小于磁芯材料的饱和磁通密 度与剩余磁通密度之差;若变换器为双端电路,由于磁通可在正负双向变化(如图2(3),则 △Bac应小于磁
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:1048576
    • 提供者:weixin_38744375
  1. 单级桥式PFC电路功率变压器偏磁产生机理分析.pdf

  2. 单级桥式PFC电路功率变压器偏磁产生机理分析pdf,提出一种单级全桥软开关功率因数校正电路,它采用移相控制方式,能同时实现功率因数校正、软开关、输出电压调节和电气隔离.但由于电路特殊的控制方式和所要实现的功率因数校正功能,该校正电路中的功率变压器除存在普通全桥变换器产生偏磁的原因外,还存在产生偏磁的特殊因素.本文在分析变换器的电路结构和工作原理之后,对偏磁的产生机理进行了分析,指出了该变换器影响偏磁大小的各种因素,并给出一种解决措施,可有效抑制偏磁的产生,最后的仿真和实验证明了理论分析的正确性第
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:1048576
    • 提供者:weixin_38744270
  1. LED驱动电路功率因数改善探讨及NCP1014解决方案.pdf

  2. LED驱动电路功率因数改善探讨及NCP1014解决方案pdf,本参考设计将分析现有照明LED驱动电路设计功率因数低的原因,探讨改善功率因数的技术及解决方案,介绍相关设计过程、元器件选择依据、测试数据分享,显示这参考设计如何轻松符合“能源之星”固态照明标准的功率因数要求,非常适合低功率LED照明应用增加了元件数量、降低了效率及增加了复杂性,最适用的功率电平远 高于本应用的功率电平。 解决方案 高功率因数通常需要正弦线路电流,且要求线路电流及电流之间的相 位差极小。修改设计的第一步就是在开关段前获得
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:1048576
    • 提供者:weixin_38744207
  1. 48V_30A移相全桥ZVSDC_DC变换器的设计.pdf

  2. 48V_30A移相全桥ZVSDC_DC变换器的设计pdf,48V_30A移相全桥ZVSDC_DC变换器的设计一般要求输出滤波电感电流的最大脉动量厂是最大输出电流的10%,即在输出满载电流10%条件下, 输出电感电流应连续。因此:Ⅰ、=30+0.1×30=33(A)。 由于次级绕组带中心抽头,故次级绕组电流有效值为:0.707*33=23.3(A) 那么次级绕组裸线面积: A=5=6.67(mm) (4).考虑到趋附效应的影响,选用的导线为多股漆包线并绕,f,=100HZ时趋附深度:Δ=0.21(
  3. 所属分类:其它

    • 发布日期:2019-09-13
    • 文件大小:1048576
    • 提供者:weixin_38743602
  1. 电路图设计:RCD箝位反激变换器.pdf

  2. 电路图设计:RCD箝位反激变换器pdf,反激变换器具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而是逆变器辅助开关电源理想的电路拓扑。然而,反激变换器功率开关关断时由漏感储能引起的电压尖峰必须用箝位电路加以抑制。由于RCD箝位电路比LCD箝位、有源箝位电路更简洁且易实现,因而RCD箝位反激变换器在小功率变换场合更具有实用价值。将RCD箝位反激变换器与峰值电流控制技术结合在一起,便可获得高性能的逆变器辅助开关电源。式中:VC为误差放大器的输出电压 IS为检测电流。 U
  3. 所属分类:其它

    • 发布日期:2019-09-13
    • 文件大小:694272
    • 提供者:weixin_38744153
  1. 高频变压器磁芯(功率表)

  2. 开关电源所用高频变压器磁芯EI、EE、EER、ETD、PQ、LP、RM、EPC系列的参数规格。具体列出Ae\Ve\Ee\Acp\Acw\Al\Pw等的参数和曲线变化图表
  3. 所属分类:硬件开发

    • 发布日期:2012-03-12
    • 文件大小:1048576
    • 提供者:defeatli
  1. 开关电源输出电感烧毁的5大原因

  2. 开关电源输出电感烧毁的5大原因: ①电感与开关电源输出功率不匹配。线圈直流电阻大,导致满负荷或超负荷输出时,线圈温度持续升高直至烧毁。这种原因可能性有但又不大。 ②电源长时间超负荷运行(可能性较大)。这将导致电感的线圈电阻损耗(直流)和磁芯涡流损耗(交流)加重,这两种损耗都变成热能,使电感温度快速升高直至烧坏。一般开关电源超负荷50%(即额定输出功率150%)时,保护电路才起作用。电源的额定输出功率,实际上也是极限输出功率,使用时不能超出,而且要留有一定余量。这样才能连续、安全、稳定运行。
  3. 所属分类:其它

    • 发布日期:2020-07-15
    • 文件大小:149504
    • 提供者:weixin_38732463
  1. 为什么变压器要用片状的硅钢片做磁芯

  2. 日常生活中,可以看到变压台上的变压器,和我们家用电子设备不一样,但是同样作为变压的电子元器件,为什么高频变压器用的是铁氧体磁芯,而变压台上的变压器却用的硅钢片呢? 硅钢是一种合硅的钢,其含硅量在0.8~4.8%。由硅钢做变压器的铁芯,是因为硅钢本身是一种导磁能力很强的磁性物质,在通电线圈中,它可以产生较大的磁感应强度,从而可以使变压器的体积缩小。常用的变压器铁芯一般都是用硅钢片制做的。 我们知道,实际的变压器总是在交流状态下工作,功率损耗不仅在线圈的电阻上,也产生在交变电流磁化下的铁芯中。通
  3. 所属分类:其它

    • 发布日期:2020-07-14
    • 文件大小:182272
    • 提供者:weixin_38500709
  1. 高频平板变压器的原理与设计

  2. 运行在高频的常规变换变压器存在着漏电感大,匝间电容量大,趋肤效应、邻近效应严重,磁芯有局部过热点等问题。一种新型变压器,高频平板变压器已开发出来,它能减小漏电感和匝间电容,能消除常规变压器存在的磁芯局部过热点,能使趋肤效应、邻近效应等问题得以改善,它具有很高的功率密度、很高的效率、很低的电磁干扰和简易价廉等优点。
  3. 所属分类:其它

    • 发布日期:2020-07-28
    • 文件大小:120832
    • 提供者:weixin_38655496
  1. 高频平板变压器的原理与设计

  2. 运行在高频的常规变换变压器存在着漏电感大,匝间电容量大,趋肤效应、邻近效应严重,磁芯有局部过热点等问题。一种新型变压器,高频平板变压器已开发出来,它能减小漏电感和匝间电容,能消除常规变压器存在的磁芯局部过热点,能使趋肤效应、邻近效应等问题得以改善,它具有很高的功率密度、很高的效率、很低的电磁干扰和简易价廉等优点。
  3. 所属分类:其它

    • 发布日期:2020-10-23
    • 文件大小:160768
    • 提供者:weixin_38610573
  1. 元器件应用中的开关电源中高频变压器绕制心得

  2. 1:使用专用的变压器设计软件PIXls Designer和PI Transformer Designer,将需要的参数,如输入电压范围、输出电压要求、偏置电压大小、变压器估计功率、功率因数、额定负载、初级线圈层数、次级线圈匝数等参数输入,PI软件会根据用户输入的参数给出一个合理的变压器参数,然后设计人员就可以跟句给出的参数绕制变压器了,软件给出的会有以下参数:初级线圈、反馈线圈、次级线圈的层数、匝数、线经大小、绕制的方向、气隙大小、线圈与线圈之间的胶带的层数、骨架型号、磁芯型号、浸漆要求等。
  3. 所属分类:其它

    • 发布日期:2020-12-08
    • 文件大小:57344
    • 提供者:weixin_38564718
  1. 元器件应用中的高频电源变压器磁芯的设计原理

  2. 1 引言电子信息产业的迅速发展,对高频开关式电源不断提出新的要求。据报导,全球开关电源市场规模已超过100亿美元[1]。通信、计算机和消费电子产品是开关电源的三大主力市场。庞大的开关电源市场主要由AC/DC和DC/DC开关电源两部分组成。据预测,AC/DC开关电源全球销售收入将从1999年的91亿美元增加到2004年的122亿美元,年平均增长率为5.9%。低功率(0~300W)的AC/DC将面向增长平稳的消费电子产品和计算机市场;大功率(750~1500W)的AC/DC电源将面向增长强劲的电信市
  3. 所属分类:其它

    • 发布日期:2020-12-08
    • 文件大小:223232
    • 提供者:weixin_38731979