您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 卷积神经网络代码c++

  2. 卷积神经网络lenet-5的实现代码 c++版本
  3. 所属分类:C++

    • 发布日期:2014-09-21
    • 文件大小:10485760
    • 提供者:ck__123
  1. 卷积神经网络

  2. 卷积神经网络的快速发展得益于LeNet-5、Alexnet、ZFNet、VGGNet、GoogleNet、ResNet等不同结构的设计出现。卷积神经网络的结构哟很多种,但是基本机构是相似的,主要包括:卷积层、池化层、激活函数、正则化、全连接层以及损失函数。
  3. 所属分类:讲义

    • 发布日期:2018-03-09
    • 文件大小:5242880
    • 提供者:dongairan
  1. cnn卷积神经网络

  2. cnn卷积神经网络 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。由于卷积神经网络能够进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SI
  3. 所属分类:其它

    • 发布日期:2019-04-11
    • 文件大小:575
    • 提供者:sdfgegefdg
  1. 卷积神经网络在肝包虫病CT图像诊断中的应用

  2. 探讨卷积神经网络(Convonlutional Neural Network,CNN)在肝包虫病CT图像诊断中的应用。选取两种类型的肝包虫病CT图像进行归一化、改进的中值滤波去噪和数据增强等预处理。以LeNet-5模型为基础提出改进的CNN模型CTLeNet,采用正则化策略减少过拟合问题,加入Dropout层减少参数个数,对二分类肝包虫图像进行分类实验,同时通过反卷积实现特征可视化,挖掘疾病潜在特征。结果表明,CTLeNet模型在分类任务中取得了较好的效果,有望通过深度学习方法对肝包虫病提供辅助
  3. 所属分类:其它

    • 发布日期:2020-10-15
    • 文件大小:312320
    • 提供者:weixin_38634037
  1. 卷积神经网络_源代码.rar

  2. 这是我的博客文章:基于深度学习的CIFAR10图像分类 的源代码。 本文实验基于Windows10系统,仿真软件用的是Anaconda下基于python编程的JupyterNotebook编辑器。通过利用Google的深度学习框架Tensorflow,搭建新的卷积网络结构,提出了基于卷积神经网络的CIFAR10图像分类识别算法,主要参照经典的卷积神经网络模型LeNet-5结构,提出新的卷积神经网络结构并对飞机、汽车、鸟类、猫、鹿、狗、蛙类、马、船和卡车10种事物进行分类,该模型构建了一个输入层、
  3. 所属分类:互联网

    • 发布日期:2020-11-28
    • 文件大小:2097152
    • 提供者:weixin_37647148
  1. 《动手学深度学习——卷积神经网络、LeNet、卷积神经网络进阶》笔记

  2. 动手学深度学习:卷积神经网络,LeNet,卷积神经网络进阶 卷积神经网络基础 目录: 1、卷积神经网络的基础概念 2、卷积层和池化层 3、填充、步幅、输入通道和输出通道 4、卷积层的简洁实现 5、池化层的简洁实现 1、卷积神经网络的基础概念 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:135168
    • 提供者:weixin_38630571
  1. 《动手学——卷积神经网络进阶》笔记

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 两派特征提取的观点: 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:392192
    • 提供者:weixin_38752628
  1. pytorch task05 卷积神经网络

  2. pytorch task05 卷积神经网络 文章目录pytorch task05 卷积神经网络1.卷积神经网络基础1.1二维卷积层1.2填充和步幅1.3多输入通道和多输出通道1.4卷积层与全连接层的对比1.5池化2 经典模型LeNet-5AlexNetVGGGoogLeNet (Inception)ResNet退化问题残差网络的解决办法 1.卷积神经网络基础 1.1二维卷积层 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:186368
    • 提供者:weixin_38706455
  1. 小结5:卷积神经网络基础、LeNet、卷积神经网络进阶

  2. 文章目录卷积神经网络基础二维卷积层padding以及stride对特征图影响stridekernel参数LeNetLeNet结构图卷积神经网络进阶AlexNetVGGNiN(network in network)GoogleNet 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:575488
    • 提供者:weixin_38628626
  1. 动手学深度学习PyTorch版–Task4、5–机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer;;卷积神经网络基础;leNet;卷积神经网络进阶

  2. 一.机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 1.Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 class Encoder(nn.Module): def __init__(self, **kwargs): super(Encoder, self)
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38674512
  1. 卷积神经网络进阶

  2. 深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 神经网络计算复杂。 还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 神经网络发展的限制:数据、硬件 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:37888
    • 提供者:weixin_38659648
  1. 5.6 深度卷积神经网络(AlexNet)

  2. 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意。 神经网络计算复杂。虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及。因此,训练一个多通道、多层和有大量参数的卷积神经网络在当年很难完成。 当年研究者还没有大量深入研究参数初始化和非凸优化算法等诸多领域,导致复杂的神经网络的训练通常较困难。 我们在上一节看到,神经网络可以直接基于图像
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:117760
    • 提供者:weixin_38529123
  1. Task05:卷积神经网络基础+LeNet

  2. 卷积神经网络 感受野 LeNet架构 卷积层 互相关运算与卷积运算 卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。 填充 步幅 多输入通道和多输出通道 卷积层的简洁实现 X = torch.rand(4, 2, 3, 5) print(X.shape) conv2d = nn.Conv2d(in_ch
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:1048576
    • 提供者:weixin_38720653
  1. 5.5 卷积神经网络(LeNet)

  2. 在“多层感知机的从零开始实现”一节里我们构造了一个含单隐藏层的多层感知机模型来对Fashion-MNIST数据集中的图像进行分类。每张图像高和宽均是28像素。我们将图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中。然而,这种分类方法有一定的局限性。 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。假设输入是高和宽均为1,0001,0001,000像素的彩色照片(含3个通道)。即使全连接层输出个
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:121856
    • 提供者:weixin_38538472
  1. 基于卷积神经网络的深度图姿态估计算法研究

  2. 随着深度相机的应用,三维场景的重建越来越简单、快速。从单视角的深度场景图像中检索 出物体还是比较困难,特别是物体的姿态估计。提出了一种基于卷积神经网络的深度图像姿态估计 算法。 该算法采用了回归估计来实现姿态的估计。 通过 3D 模型合成大量不同姿态的深度图像样本,从而解决回归估计需要稠密采样的训练数据问题。对于不同类别的物体,分别用线性回归估计来拟 合姿态函数。 在基于 LeNet-5 模型上修改了卷积神经网络的结构,使得该网络适用于回归估计。实验结果表明:我们的方法取得了平均误差约 4.3°
  3. 所属分类:其它

    • 发布日期:2021-03-07
    • 文件大小:460800
    • 提供者:weixin_38632797
  1. 基于改进的卷积神经网络LeNet-5乳腺疾病诊断方法

  2. 针对计算机辅助乳腺疾病诊断方法准确率低、耗时长等问题,提出一种基于改进的 卷积神经网络(CNN)的乳腺疾病诊断方法.该方法从以下3个方面做了改进:(1)设计双通道 卷积神经网络来解决单通道特征提取不充分的问题;(2)采用Dropout技术有效地防止过拟合现象;(3)采用支持向量机(SVM)代替传统的Softmax分类器以减少运算量,提高运算速度.测试结果表明:所提出的分类模型平均准确率高达92.31%,平均训练时间为968s,充分验证 了该方法的有效性。
  3. 所属分类:其它

    • 发布日期:2021-03-07
    • 文件大小:381952
    • 提供者:weixin_38696836
  1. 《动手学深度学习Pytorch版》Task5-卷积神经网络

  2. 卷积神经网络基础 需要理解卷积神经网络的基础概念,主要是卷积层和池化层、填充、步幅、输入通道和输出通道的含义。 几个经典的模型 LeNet AlexNet VGG NiN GoogLeNet 1×1卷积核作用 放缩通道数:通过控制卷积核的数量达到通道数的放缩。 增加非线性:1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。 计算参数少 LeNet vs AlexNet 注:5*5 Conv(16),这里的16指的是输出的通道数 LeNet的图
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:219136
    • 提供者:weixin_38605967
  1. 动手学 task5 卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础 二维卷积层 填充和步幅 我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。 填充 公式: 总的计算公式: 总结: 最后一个公式相比前一个公式没有加1的操作,乍一看公式不同(即什么时候加1什么时候不加1)其时,对第二个公式分解一下,即可归纳出什么时候都需要加1的操作。这样便于记忆) 多输入通道和多输出通道¶ 代码: print(X.shape) conv2d = nn.Conv2d(in_channels=2, out_chann
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:1048576
    • 提供者:weixin_38699352
  1. 《动手学习深度学习》之三:2.卷积神经网络(CNN)进阶-5种模型(打卡2.5)

  2. 卷积神经网络(CNN)进阶 2.LeNet、AlexNet、VGG、NiN、GooLeNet 5种模型 2.1.LeNet 2.1.1.全连接层和卷积层的比较: 使用全连接层的局限性: • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。 使用卷积层的优势: • 卷积层保留输入形状。 • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 2.1.2.LeNet 模型介绍
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:749568
    • 提供者:weixin_38648968
  1. 深度学习——卷积神经网络

  2. 卷积神经网络 文章目录卷积神经网络一、卷积神经网络基础1.基础知识2.卷积层的简洁实现3.池化二、LeNet三、常见的一些卷积神经网络1.AlexNet2.VGG3.NiN4.GoogLeNet   一、卷积神经网络基础 1.基础知识 二维互相关(cross-correlation)运算:输入一个二维数组和核数组(卷积核或过滤器),卷积核在输入数组上滑动,在每个位置上与输入子数组按元素相乘并求和,取得一个输出的二维数组。如图中所示:19=0×0+1×1+3×2+4×3,25=1×0+2×1+4×
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:242688
    • 提供者:weixin_38660918
« 12 3 »