您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Datawhale&kesci&伯禹教育-深度学习-第二次打卡1 过拟合&欠拟合的解决方法

  2. 训练误差和泛化误差 训练误差: 在训练数据上表现得误差 泛化误差:在任意测试数据上表现的误差的期望 通过损失来衡量误差。例如,线性回归用平方损失函数,softma用的交叉熵回归。 模型的核心是降低泛化误差。 常见训练数据划分方法 1.留有一定比例的验证集 2. K折交叉验证 欠拟合(无法得到较低的误差)和过拟合(训练误差远小于测试误差) 产生的原因: 模型复杂度和训练数据 1.模型复杂度 2. 训练数据 一般来说训练数据随模型成正比例关系。 解决方法 : L2范数正则化 通过模型的计算误差来惩罚
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:113664
    • 提供者:weixin_38744557
  1. DataWhale组队学习打卡(二)

  2. 前言 记《手动学深度学习》组队学习第二次打卡 打卡内容 线性回归代码实现(基于Pytorch) 理论复习 线性回归理论部分可参考上一篇博客 线性回归模型从零开始的实现 借助jupyter运行代码,方便清晰展示各环节的输出情况。 1. 导入基础模块 In [ ]: # import packages and modules %matplotlib inline import torch from IPython import display from matplotlib import pyplo
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:75776
    • 提供者:weixin_38682406
  1. DataWhale 深度学习 第二次打卡

  2. 第二次打卡学习笔记 1.过拟合欠拟合及其解决方案 2.梯度消失与梯度爆炸 3.循环神经网络进阶 4.机器翻译及相关技术 5.注意力机制与Seq2seq模型 6.Transfomer 7.卷积神经网络基础 8.LeNet 9.卷积神经网络进阶 过拟合欠拟合及其解决方案 在解释过拟合和欠拟合现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:2097152
    • 提供者:weixin_38544781
  1. Datawhale&kesci&伯禹教育-深度学习-第二次打卡2梯度消失和爆炸

  2. 1. 深度学习模型中梯度会出现2种极端消失(vanishing)和爆炸(explosion) 产生的原因:模型太深。 2. 随机初始化模型参数的原因 避免同一层参数一样,经过有限次迭代依旧一样。 3. pytorch 的nn.module 已经默认经过合理初始化 4.几个偏移概念 (1)协变量偏移(x偏移): 训练一堆真实的猫狗图像,但是测试的是卡通猫狗。 (2)标签偏移(y偏移):测试出现了训练时没有出现的标签 (3)概念偏移(不常见):发生很缓慢 作者:炼丹法师SunFine
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:30720
    • 提供者:weixin_38597970