您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Projects-Portfolio-源码

  2. 数据科学组合 概括 该存储库由我为学术和自学目的而完成的端到端数据科学项目组成。 以iPython Notebooks的形式呈现。 按照以下步骤完成项目,它们是: 机器学习步骤 定义问题陈述:通过检查数据集并确定解决问题陈述所需的机器学习模型的类型来定义问题陈述。 探索性数据分析(EDA) :在此步骤中,将对数据进行细致的分析以提取任何新信息,以查找自变量内以及自变量与因变量之间的任何关系。 使用单变量分析,双变量分析和相关矩阵。 处理任何空值。 检查数据的偏斜度。 处理异常值:使用Z Sc
  3. 所属分类:其它

    • 发布日期:2021-03-16
    • 文件大小:33554432
    • 提供者:weixin_42134240
  1. KNN项目组合-源码

  2. KNN项目组合 在此回购中,我使用KNN算法(K最近邻)实践了投资组合项目
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:1048576
    • 提供者:weixin_42176612
  1. 文件夹-源码

  2. 李Li(Simon Li)的数据科学组合 该产品组合是笔记本的汇编,在其中我探索和分析了机器学习中的数据科学问题。 以下项目分为几个主要类别:教程,kaggle竞赛,回归问题,自然语言处理,神经网络和数据探索。 讲解 Kaggle比赛 回归问题 聚类 KNN数字分类简介 手写数字用于银行支票,医疗应用程序和邮件,但因人而异。 在此项目中,使用K近邻算法将手写数字图像的MNIST数据集分类为0到9之间的数字。 自然语言处理 披萨的随机行为(ROAP) 一个流行的subreddit是比萨
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:2048
    • 提供者:weixin_42134117
  1. insurance_cross_sell:使用ML向健康保险客户交叉销售汽车保险-源码

  2. 交叉销售汽车保险 该项目使用机器学习来预测当前的健康保险客户是否会购买汽车保险。 基础数据是从Kaggle获得的,其中包含有关先前销售的信息。 在测试各种分类器(包括逻辑回归,支持向量分类器,KNN分类器和随机森林分类器)之前,使用SMOTENC对数据进行了转换和上采样。 在使用默认的超参数对分类器进行测试之后,进行了网格搜索以识别最佳的超参数组合。
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:6291456
    • 提供者:weixin_42134094