介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大
提出一种基于LMS(Least Mean Square)自适应算法的滤波方法,介绍该方法在低频信号滤波上的应用及在FPGA平台上实现。传统数字滤波器FIR、IIR滤波器针对不同的系统和干扰信号,其滤波参数不固定。因此,在窄带信号的滤波处理中,传统滤波器对信号滤波降噪的效果往往受到衰减增益限制。提出的方法先以CORDIC(Coordinate Rotation Digital Computer)算法产生的正弦信号来调制采样信号,根据采样信号与基准信号误差使其权向量沿负梯度方向终止于维纳解。该方法在