您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 神经网络与deep learning 学习与实践,多层前馈神经网络与神经网络的实现

  2. 构建一个至少含有1-2 层隐藏层的神经网络模型,解决手写的0-9 十个手写 数字的识别问题。神经网络模型构建过程中需要注意的几点: (1)数据集采用MNIST 阿拉伯数字手写体数据集。 (2)模型输入层的节点个数的设计。输入层的节点数目应该与输入的手写 体图片的大小相等。MNIST 手写体数据集中手写阿拉伯数字的图像为28×28 的 方形图。 (3)每一个隐藏层的网络节点数的设计。应该遵循特征提取与降维相统一 的原则。 (4)输出层的节点数。因为识别任务是0-9 的十个手写数字,所以输出层 应
  3. 所属分类:深度学习

    • 发布日期:2018-09-18
    • 文件大小:5120
    • 提供者:alice9236
  1. MNIST手写数字识别问题的多层神经网络模型实践

  2. (10分) MNIST手写数字识别问题的多层神经网络模型实践 按课程案例,动手完成编码实践。 自行设计一种神经网络模型,并尝试采用不同超参数,让模型的准确率达到97.5%。 提交要求: 1、你认为最优的一次带运行结果的源代码文件(.ipynb 格式) 2、作为附件上传 评分标准: 1、完成MNIST手写数字识别的神经网络建模与应用,有完整的代码,模型能运行,准确率达97%以上;得6分;每下降一个百分点,少得1分; 2、准确率达97.3%以上;再得2分,否则再得0分; 3、准确率到97.5%以上;
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:164864
    • 提供者:weixin_38621365