以安检X光图像管制刀具自动检测识别系统为研究对象,针对原始SSD(Single Shot MultiBox Detector)算法对浅层特征图表征能力不强,在训练阶段小目标特征逐渐消失,检测精度与实时性不佳,存在对安检危险品中管制刀具等小目标漏检误检等问题,从两个方面对原始SSD进行改进:一方面,用抗退化性能更强的ResNet34网络替换SSD中的基础网络VGG16,构建SSD-ResNet34网络模型,对基础网络后三层作卷积并进行轻量级网络融合,形成新的低层特征图;将网络部分扩展层作反卷积,形