您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 深入理解Spark 核心思想与源码分析

  2. 深入理解Spark 核心思想与源码分析 ,耿嘉安完整版,大数据spark开发必备,你值得拥有。清晰完整版 《深入理解SPARK:核心思想与源码分析》结合大量图和示例,对Spark的架构、部署模式和工作模块的设计理念、实现源码与使用技巧进行了深入的剖析与解读。, 《深入理解SPARK:核心思想与源码分析》一书对Spark1.2.0版本的源代码进行了全面而深入的分析,旨在为Spark的优化、定制和扩展提供原理性的指导。阿里巴巴集团专家鼎力推荐、阿里巴巴资深Java开发和大数据专家撰写。, 本书分为
  3. 所属分类:spark

    • 发布日期:2018-05-22
    • 文件大小:39845888
    • 提供者:jyh2005
  1. 深入理解Spark 核心思想与源码分析

  2. 在深入了解一个系统的原理、实现细节之前,应当先准备好它的源码编译环境、运行环境。如果能在实际环境安装和运行Spark,显然能够提升读者对于Spark的一些感受,对系统能有个大体的印象,有经验的技术人员甚至能够猜出一些Spark采用的编程模型、部署模式等。当你通过一些途径知道了系统的原理之后,难道不会问问自己?这是怎么做到的。如果只是游走于系统使用、原理了解的层面,是永远不可能真正理解整个系统的。很多IDE本身带有调试的功能,每当你阅读源码,陷入重围时,调试能让我们更加理解运行期的系统。如果没有
  3. 所属分类:spark

    • 发布日期:2018-10-06
    • 文件大小:42991616
    • 提供者:kuigoutang2400
  1. 深入理解Spark 核心思想与源码分析

  2. 本书对Spark源代码进行了全面而深入的分析,旨在为Spark的优化、定制和扩展提供原理性的指导。阿里巴巴集团专家鼎力推荐,阿里巴巴资深Java开发和大数据专家撰写。本书对Spark的核心模块、部署和协作模块的实现原理与使用技巧进行了深入的剖析与解读。   本书分为三篇:   准备篇(第1~2章),介绍了Spark的环境搭建、设计理念与基本架构,帮助读者了解一些背景知识。   核心设计篇(第3~7章),着重讲解SparkContext的初始化、存储体系、任务提交与执行、计算引擎及部署模式的原理
  3. 所属分类:spark

    • 发布日期:2019-04-04
    • 文件大小:41943040
    • 提供者:fd2025
  1. Spark性能优化:资源调优篇

  2. 在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使
  3. 所属分类:其它

    • 发布日期:2021-02-26
    • 文件大小:414720
    • 提供者:weixin_38591291
  1. Spark性能优化:数据倾斜调优

  2. 继《Spark性能优化:开发调优篇》和《Spark性能优化:资源调优篇》讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。1、绝大多数task执行得都非常快,但个别task执行
  3. 所属分类:其它

    • 发布日期:2021-02-26
    • 文件大小:1048576
    • 提供者:weixin_38722052
  1. Spark性能优化:开发调优篇

  2. Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则。开发调优,就是要让大家了解以下一些Spark基本开发原则,包括:RDDlineage设计、算子的合理使用、特殊操作的优化等。在开发过程中,时时刻刻都应该注意以上原则,并将这些原则根据具体的业务以及实际的应用场景,灵活地运用到自己的Spark作业中。通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD;接着对这个RDD执行某个算子操作,然后得
  3. 所属分类:其它

    • 发布日期:2021-02-26
    • 文件大小:532480
    • 提供者:weixin_38704284
  1. Spark性能优化:资源调优篇

  2. 在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使
  3. 所属分类:其它

    • 发布日期:2021-02-20
    • 文件大小:414720
    • 提供者:weixin_38726186
  1. Spark性能优化:数据倾斜调优

  2. 继《Spark性能优化:开发调优篇》和《Spark性能优化:资源调优篇》讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。1、绝大多数task执行得都非常快,但个别task执行
  3. 所属分类:其它

    • 发布日期:2021-02-01
    • 文件大小:1048576
    • 提供者:weixin_38677046
  1. Spark性能优化:开发调优篇

  2. Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则。开发调优,就是要让大家了解以下一些Spark基本开发原则,包括:RDD lineage设计、算子的合理使用、特殊操作的优化等。在开发过程中,时时刻刻都应该注意以上原则,并将这些原则根据具体的业务以及实际的应用场景,灵活地运用到自己的Spark作业中。通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD;接着对这个RDD执行某个算子操作,然后
  3. 所属分类:其它

    • 发布日期:2021-02-01
    • 文件大小:532480
    • 提供者:weixin_38640150