您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. AI学习知识点.xmind

  2. *AI学习知识点* 1. 基础知识 概率论 微积分与逼近论 极限、微分、积分的基本概念 利用逼近的思想理解微积分,利用积分的方式理解概率论 概率论的基础 古典模型 常见的概率分布 大数定理和中心极限定理 协方差和相关系数 最大似然估计和最大后验估计 凸优化 凸优化的基本概念 凸函数 凸集 凸优化问题的标准形式 线性代数及矩阵 线性空间及线性变化 矩阵的基本概念 状态转移矩阵 特征
  3. 所属分类:Python

    • 发布日期:2019-07-15
    • 文件大小:240640
    • 提供者:lingfeian
  1. Keras中文文档.pdf

  2. Keras官方文档PDF版,带书签,一共307页,完整版,目前最好的版本!欢迎下载!model train on batch(x batch, y batch) 只需一行代码就能评估模型性能: loss and metrics modelevaluate(x test, y test, batch size=128) 或者对新的数据生成预测: classes =model predictx test, batch size=128) 构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的
  3. 所属分类:深度学习

    • 发布日期:2019-09-03
    • 文件大小:12582912
    • 提供者:dzgybd
  1. TensorFlow实现Softmax回归模型

  2. 主要介绍了TensorFlow实现Softmax回归模型,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:86016
    • 提供者:weixin_38715019
  1. TensorFlow实现Softmax回归模型

  2. 一、概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist im
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:90112
    • 提供者:weixin_38576922
  1. tensorflow实现softma识别MNIST

  2. 识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用。 这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化。 误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵。 另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:47104
    • 提供者:weixin_38517122
  1. Tensorflow实战入门:MNIST手写数字识别

  2. 说在前头 本文是使用BP神经网络中的softmax回归模型实现MNIST手写数字识别,实际上能实现MNIST手写数字识别的神经网络还有CNN(卷积神经网络),下一篇可能会写。 Tensorflow是个什么东西 Tensorflow是一个采用 数据流图,用于数值计算的开源软件库。节点在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组,即张量(Tensor)。 数据流图用“结点”和“线”的有向图来描述数学计算。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:173056
    • 提供者:weixin_38726255
  1. TensorFlow实现MLP多层感知机模型

  2. 一、多层感知机简介 Softmax回归可以算是多分类问题logistic回归,它和神经网络的最大区别是没有隐含层。理论上只要隐含节点足够多,即时只有一个隐含层的神经网络也可以拟合任意函数,同时隐含层越多,越容易拟合复杂结构。为了拟合复杂函数需要的隐含节点的数目,基本上随着隐含层的数量增多呈指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少。层数越深,概念越抽象,需要背诵的知识点就越少。在实际应用中,深层神经网络会遇到许多困难,如过拟合、参数调试、梯度弥散等。 过拟合是机器学习中的
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:90112
    • 提供者:weixin_38716590