您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Tensorflow官方文档中文版

  2. Tensorflow官方文档中文版,供大家学习!内容来源 英文官方网站 http://tensorflow.org 官方GiHb仓库 https://github.com/tensorflow/tensorflow 中文版 GitHub仓厍: https://github.com/jikexueyuanwiki/tensorf'lowzh 参与者(按认领章节排序) 翻译 (YIZheng Tony Jin chenweican OngJIn btter Warn TICX ° wangalcc
  3. 所属分类:深度学习

    • 发布日期:2019-03-03
    • 文件大小:6291456
    • 提供者:bit_zx
  1. Tensorflow加载预训练模型和保存模型的实例

  2. 今天小编就为大家分享一篇Tensorflow加载预训练模型和保存模型的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:69632
    • 提供者:weixin_38526780
  1. Tensorflow加载预训练模型和保存模型的实例

  2. 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.i
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:70656
    • 提供者:weixin_38674675
  1. tensorflow saver 保存和恢复指定 tensor的实例讲解

  2. 在实践中经常会遇到这样的情况: 1、用简单的模型预训练参数 2、把预训练的参数导入复杂的模型后训练复杂的模型 这时就产生一个问题: 如何加载预训练的参数。 下面就是我的总结。 为了方便说明,做一个假设:简单的模型只有一个卷基层,复杂模型有两个。 卷积层的实现代码如下: import tensorflow as tf # PS:本篇的重担是saver,不过为了方便阅读还是说明下参数 # 参数 # name:创建卷基层的代码这么多,必须要函数化,而为了防止变量冲突就需要用tf.name_scope
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:55296
    • 提供者:weixin_38622427
  1. Pytorch加载部分预训练模型的参数实例

  2. 前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程。 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:48128
    • 提供者:weixin_38666823